

Assessing the detectability of the secondary spin in EMRIs with fully-relativistic numerical waveforms*

Gabriel Andres Piovano

Collaborators: Richard Brito, Andrea Maselli, Paolo Pani

University of Rome La Sapienza, Physics Department & INFN Rome

Spanish-Portuguese Relativity Meeting, 13-16 September 2021, Aveiro

*Based on arXiv: 2105.07083

Extreme Mass-Ratio Inspirals (EMRIs)

Stellar-mass compact objects plunges into a supermassive black hole

Primary mass $M: 10^6 - 10^9 M_{\odot}$ Secondary mass $\mu: 1 - 100 M_{\odot}$

mass ratio
$$q=\mu/\mathsf{M}\sim 10^{-4}-10^{-7}$$

 \implies we can expand Einstein field equations in q

Some features:

Modeled as point-particle moving in background spacetime (Kerr) GWs in the mHz range \implies targets for space observatories (LISA) $\sim 10^5$ orbits in 1 year before inspiral in strong gravity regime

Extreme Mass-Ratio Inspirals (EMRIs)

Stellar-mass compact objects plunges into a supermassive black hole

Primary mass $M: 10^6 - 10^9 M_{\odot}$ Secondary mass $\mu: 1 - 100 M_{\odot}$

mass ratio
$$q=\mu/\mathsf{M}\sim 10^{-4}-10^{-7}$$

 \implies we can expand Einstein field equations in q

Some features:

Modeled as point-particle moving in background spacetime (Kerr) GWs in the mHz range \implies targets for space observatories (LISA) $\sim 10^5$ orbits in 1 year before inspiral in strong gravity regime

We consider EMRI binaries in Kerr with a spinning secondary

ullet \sim 1mrad precision in the GW phase needs 1-post-adiabatic order

 $\mathcal{C}^{(1)}$ contains self force plus secondary spin χ effects

ullet ~ 1mrad precision in the GW phase needs 1-post-adiabatic order

 $\mathcal{C}^{(1)}$ contains self force plus secondary spin χ effects

• Dephasing induced by χ is relevant (\sim 10rad)¹

¹Warburton+2017, Piovano+ 2020

ullet ~ 1mrad precision in the GW phase needs 1-post-adiabatic order

$$\Phi_{\mathsf{GW}} = \underbrace{q^{-1}\mathcal{C}^{(0)}}_{\text{adiabatic}} + \underbrace{q^{-1/2}\mathcal{C}^{(1/2)}}_{\text{resonances}} + \underbrace{q^{0}\mathcal{C}^{(1)}}_{\text{post-1-adiabatic}} + \mathcal{O}(q)$$

 $\mathcal{C}^{(1)}$ contains self force plus secondary spin χ effects

- Dephasing induced by χ is relevant (\sim 10rad)¹
- Parameter estimation done with PN fluxes and kludge waveforms²

¹Warburton+2017, Piovano+ 2020 ²Huerta and Gair, 2011

ullet ~ 1mrad precision in the GW phase needs 1-post-adiabatic order

$$\Phi_{\mathsf{GW}} = \underbrace{q^{-1}\mathcal{C}^{(0)}}_{\text{adiabatic}} + \underbrace{q^{-1/2}\mathcal{C}^{(1/2)}}_{\text{resonances}} + \underbrace{q^{0}\mathcal{C}^{(1)}}_{\text{post-1-adiabatic}} + \mathcal{O}(q)$$

 $\mathcal{C}^{(1)}$ contains self force plus secondary spin χ effects

- Dephasing induced by χ is relevant (\sim 10rad)¹
- Parameter estimation done with PN fluxes and kludge waveforms²
- What happens with relativistic fluxes and waveforms?
- \bullet We estimated errors on χ with a Fisher matrix approach

¹Warburton+2017, Piovano+ 2020

²Huerta and Gair, 2011

Mathisson-Papapetrou-Dixon (MPD) equations of motion

• MPD equations for a spinning body

$$\nabla_{\vec{v}} p^{\mu} = -\frac{1}{2} R^{\mu}{}_{\nu\alpha\beta} v^{\nu} S^{\alpha\beta} \qquad \nabla_{\vec{v}} S^{\mu\nu} = 2p^{[\mu} v^{\nu]} \qquad v^{\mu} = \frac{\mathrm{d}z^{\mu}}{\mathrm{d}\lambda}$$

spin vector
$$S_{\mu} \equiv \frac{1}{2\mu} \epsilon_{\mu\nu\alpha\beta} p^{\nu} S^{\alpha\beta}$$

Mathisson-Papapetrou-Dixon (MPD) equations of motion

• MPD equations for a spinning body

$$\nabla_{\vec{v}} p^{\mu} = -\frac{1}{2} R^{\mu}{}_{\nu\alpha\beta} v^{\nu} S^{\alpha\beta} \qquad \nabla_{\vec{v}} S^{\mu\nu} = 2p^{[\mu} v^{\nu]} \qquad v^{\mu} = \frac{\mathrm{d}z^{\mu}}{\mathrm{d}\lambda}$$

spin vector
$$S_{\mu}\equiv rac{1}{2\mu}\epsilon_{\mu
ulphaeta}p^{
u}S^{lphaeta}$$

• Tulczyjew-Dixon (TD) supplementary spin condition (SSC)

$$p_\mu S^{\mu
u} = 0 \implies \mu^2 = {
m cost} \; \; {
m and} \; S = {
m cost}$$

Mathisson-Papapetrou-Dixon (MPD) equations of motion

• MPD equations for a spinning body

$$\nabla_{\vec{v}} p^{\mu} = -\frac{1}{2} R^{\mu}{}_{\nu\alpha\beta} v^{\nu} S^{\alpha\beta} \qquad \nabla_{\vec{v}} S^{\mu\nu} = 2p^{[\mu} v^{\nu]} \qquad v^{\mu} = \frac{\mathrm{d}z^{\mu}}{\mathrm{d}\lambda}$$

spin vector
$$S_\mu \equiv rac{1}{2\mu} \epsilon_{\mu
ulphaeta} p^
u S^{lphaeta}$$

• Tulczyjew-Dixon (TD) supplementary spin condition (SSC)

$$p_\mu S^{\mu
u} = 0 \implies \mu^2 = {
m cost}$$
 and $S = {
m cost}$

- Circular equatorial orbits (CEO) with $S^{\mu} = \delta^{\mu}_{ heta}S^{ heta}$
 - \implies S^{μ} (anti)-aligned to primary spin *a*
 - \implies dynamics fixed by $E = E(r, \sigma), J_z = J_z(r, \sigma), \Omega = \Omega(r, \sigma)$

Radiation reaction effects and balance laws

GW fluxes and waveforms computed with the Teukolsky formalism

$$\sigma \coloneqq rac{S}{\mu M} = rac{S}{\mu^2} q = \chi q$$
 with $q \ll \sigma \ll 1$ in EMRIs

At first order in the secondary spin³

$$\left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{GW}} = -\frac{\mathrm{d}E}{\mathrm{d}t} \qquad \left(\frac{\mathrm{d}J_z}{\mathrm{d}t}\right)_{\mathrm{GW}} = -\frac{\mathrm{d}J_z}{\mathrm{d}t}$$

Technical assumptions:

- no radiation reaction on $S^{\mu
 u}$ and assumed S=cost
- orbits remain circular and equatorial

We employed the numerical routines of the BHPToolkit $^{igodoldsymbol{\Theta}}$ 4

Gabriel Andres Piovano

³Akcay+, 2019

⁴Black Hole Perturbation Toolkit https://bhptoolkit.org

Linear spin corrections to the fluxes

Piovano, Maselli, Pani Phys. Rev. D 102 (2020) 024041 Linear spin corrections $\delta \mathcal{F}^{\sigma}$ obtained by interpolating ($\mathcal{F}^0 \equiv \mathcal{F}(\sigma = 0)$)

$$\mathcal{F}(r,\Omega) - \mathcal{F}^{0}(r,\Omega) = \sigma \delta \mathcal{F}^{\sigma}(r,\Omega) + \mathcal{O}(\sigma^{2}) \qquad \mathcal{F}(r,\Omega) \coloneqq \frac{1}{q^{2}} \left(\frac{\mathrm{d}E}{\mathrm{d}t}\right)_{\mathrm{GW}}$$

Gabriel Andres Piovano

Linear spin corrections to the GW phase

Piovano, Maselli, Pani Phys. Rev. D 102 (2020) 024041 GW phase is $\Phi_{GW} = 2\Phi$ for dominant mode ($\Phi_{GW}^0 \equiv \Phi_{GW}^0(\sigma = 0)$)

$$\Phi_{\mathsf{GW}}(t) - \Phi^0_{\mathsf{GW}}(t) = (\sigma/q)\delta\Phi^\sigma_{\mathsf{GW}}(t) + \mathcal{O}(\sigma^2/q)$$

Spin resolution and Kerr bound test

Piovano, Maselli, Pani PLB 811 135860 (2020)

Minimum $\Delta \chi = \chi_B - \chi_A$ leading to a phase difference of α rad is:

 $|\Delta \chi| > \alpha |\delta \Phi^{\sigma}_{\rm GW}(a)|^{-1}$

Parameter estimation with Fisher matrices

In the high SNR limit

$$\begin{split} \Sigma_{ij} &= (\Gamma^{-1})_{ij} & \text{covariance matrix} \\ \Gamma_{ij} &= \sum_{\alpha = I, II} \left(\frac{d\tilde{h}_{\alpha}}{dx^{i}} \middle| \frac{d\tilde{h}_{\alpha}}{dx^{j}} \right)_{\vec{x} = \vec{x}_{0}} & \text{Fisher matrix} \\ (p_{\alpha}|q_{\alpha}) &= 4 \text{Re} \int_{f_{\min}}^{f_{\max}} \frac{df}{S_{n}(f)} \tilde{p}_{\alpha}^{*}(f) \tilde{q}_{\alpha}(f) & \text{scalar product} \end{split}$$

11 parameters for circular equatorial orbits with spins (anti)aligned

- intrinsic: masses (ln μ , ln M), spins (a, χ), r_0
- extrinsic: ϕ_0 , angles $(\vartheta_S, \varphi_S, \vartheta_K, \varphi_K)$, distance $\ln D$

 Γ_{ij} is ill-conditioned: small error in $\Gamma_{ij} \implies$ large error in Σ_{ij} Some cases required waveforms with >90 digits for stable Γ_{ij} and Σ_{ij} !

Fisher-matrix errors neglecting the secondary spin

Piovano, Brito, Maselli, Pani arXiv: 2105.07083 Masses: $M = 10^6 M_{\odot}$, $\mu = 10 M_{\odot}$. Spins: a = 0.9, $\chi = 0$. Sky location fixed. 1 year of observation. Errors are all normalized to SNR = 30.

l	In M	$\ln \mu$	a/M	<i>r</i> ₀ / <i>M</i>	ϕ_0
2	-3.24	-3.53	-4.15	-4.45	0.48
2+3	-3.25	-3.54	-4.16	-4.46	-0.52
2+3+4	-3.25	-3.55	-4.16	-4.46	-0.53

Table: \log_{10} of the errors

l	In D	$\Delta\Omega_S$	$\Delta\Omega_K$
2	$4.7 imes 10^{-1}$	$7.9 imes10^{-4}$	2.5
2+3	$4.7 imes 10^{-2}$	$7.3 imes10^{-4}$	$1.3 imes10^{-2}$
2+3+4	$4.6 imes 10^{-2}$	$7.2 imes 10^{-4}$	$1.1 imes10^{-2}$

Table: errors on $\ln D$ and sky location of source $(\Delta \Omega_S)$ and primary spin $(\Delta \Omega_K)$.

Fisher-matrix errors including the secondary spin

Piovano, Brito, Maselli, Pani arXiv: 2105.07083 $M = 10^6 M_{\odot}, \chi = 1$. Sky location fixed. 1 year observation Errors are normalized to SNR = 30 (SNR = 150) for $\mu = 10 M_{\odot} (100 M_{\odot})$.

a/M	μ/M_{\odot}	prior	In M	$\ln \mu$	a/M	χ	r_0/M	ϕ_0
0.9	10	no	-2.26	-2.41	-2.66	2.85	-3.88	0.48
		yes	-3.24	-3.53	-4.14	0.48	-4.45	0.48
	100	no	-2.20	-2.39	-2.78	1.66	-4.14	-0.015
		yes	-3.30	-3.52	-4.32	0.064	-4.93	-0.024
0.99	10	no	-2.81	-2.96	-4.55	1.98	-3.89	0.47
		yes	-3.51	-3.76	-4.67	0.52	-4.32	0.47
	100	no	-2.14	-2.33	-3.39	1.21	-3.75	-0.12
		yes	-3.01	-3.22	-4.03	0.11	-4.50	-0.12

Table: \log_{10} of the errors with and without imposing a prior on $\chi.$ Only $\ell=2$

- Secondary spin is not measurable
- With no prior on χ , correlations spoil errors on intrinsic parameters

Gabriel Andres Piovano

We estimated errors on binary parameters for fully relativistic waveforms with a Fisher matrix approach

Summary:

- Our analysis confirm results obtained with kludge waveforms
- Secondary spin might not be measurable due to correlations...
- ...but we considered circular orbits without self-force or spin evolution

- Consider general orbits (eccentric and inclined)
- Include secondary spin in fast-waveform? (Challenging)⁵
- More sophisticated statistical analysis? (MonteCarlo)⁶
- Include conservative first order in q self force
- Investigate spin evolution and radiation back-reaction

Final notes and acknowledgments

- code and data are available at the GitHub repository https://web.uniroma1.it/gmunu/resources
- this work makes use the BHPToolkit Ø https://bhptoolkit.org/
- all tensors computation performed with "xAct" www.xact.es
- Feel free to contact me at gabriel.piovano@uniroma1.it

Final notes and acknowledgments

- code and data are available at the GitHub repository https://web.uniroma1.it/gmunu/resources
- this work makes use the BHPToolkit https://bhptoolkit.org/
- all tensors computation performed with "xAct" www.xact.es
- Feel free to contact me at gabriel.piovano@uniroma1.it

Thank you for you attention!

Backup slides

Gabriel Andres Piovano

In the high SNR limit, the posterior distribution is approximated by a Gaussian distribution

$$\log p(\vec{\theta}|s) \propto \log p_0(\vec{\theta}) - \frac{1}{2} (\vec{\theta} - \vec{\theta}_{\mathsf{true}})^t \Gamma(\vec{\theta} - \vec{\theta}_{\mathsf{true}}) \equiv f(\vec{\theta})$$

Gaussian prior on $\chi,$ with $\sigma_{\mathbf{0},\chi}=\mathbf{1}$ and centered in $\chi=\mathbf{0}$

$$\log p_0(\vec{ heta}) = -\frac{1}{2}\chi^2 \delta_{\chi i}$$
 with $\delta_{\chi i}$ delta Kronecker

We can then rewrite $f(\vec{ heta})$ as single quadratic form plus a constant term

$$f(\vec{\theta}) = -\frac{1}{2} \left(\vec{\theta} - \Gamma_{\text{pos}}^{-1} \vec{b} \right)^t \Gamma_{\text{pos}} \left(\vec{\theta} - \Gamma_{\text{pos}}^{-1} \vec{b} \right) + R$$

where

$$\Gamma_{\rm pos} = \Gamma + \delta_{\chi i} \qquad \vec{b} = \vec{\theta}_{\rm true} \Gamma \qquad R = \frac{1}{2} \left(\vec{b}^{t} \Gamma_{\rm pos}^{-1} \vec{b} - \vec{\theta}_{\rm true} \Gamma \vec{\theta}_{\rm true} \right)$$

Linearization in σ : angular Teukolsky equation

Piovano, Brito, Maselli, Pani arXiv: 2105.07083 Angular Teukolsky equation defines an operator \mathcal{H} ($x = cos\theta$, $c = a\omega$)

$$\begin{array}{ll} \mathcal{H}|S
angle = -\lambda_{\ell m\omega}|S
angle & |S
angle \equiv S^c_{\ell m}(x) & \mathcal{H} = \mathcal{K} + \mathcal{V} \\ \mathcal{K} & \text{``kinetic'' operator} & \mathcal{V} & \text{``potential'' operator} \end{array}$$

Expansion in σ , $c = c^0 + \sigma c^1 + \mathcal{O}(\sigma^2)$

$$\lambda_{\ell m \omega} = \lambda_{\ell m}^{0} + \sigma \lambda_{\ell m}^{1} \qquad |S\rangle = |S^{0}\rangle + \sigma |S^{1}\rangle$$
$$\lambda_{\ell m}^{1} = \langle S^{0} | \mathcal{V}^{1} | S^{0} \rangle \equiv \int_{-1}^{1} S_{\ell m}^{0} \mathcal{V}^{1} S_{\ell m}^{0} \mathrm{d}x$$

 $|S^1
angle$ obtained by expanding Leaver method in σ $\lambda^0_{\ell m}$ and $|S^0
angle$ calculated with the BHPToolkit @ package "SWSH" ⁷

Gabriel Andres Piovano

⁷Black Hole Perturbation Toolkit https://bhptoolkit.org

Linearization in σ : radial Teukolsky equation

Piovano, Brito, Maselli, Pani arXiv: 2105.07083 Homogeneous solutions computed in hyperboloidal-slicing coordinates (HSC) 8

$$\mathcal{R}^{\mathrm{in,up}}_{\ell m \omega}(r) = rac{\Delta^s}{r} e^{iH\omega r^*} e^{im ilde{\phi}} \psi(r) \qquad ilde{\phi} = rac{a}{r_+ - r_-} \ln\left(rac{r-r_+}{r-r_-}
ight)$$

 $R_{\ell m \omega}^{
m in}(R_{\ell m \omega}^{
m up})$ for $H=-1\,(H=+1).\,\,\psi(r)$ satisfies

$$\Delta^2 \frac{\mathrm{d}^2 \psi}{\mathrm{d}r^2} + \Delta \tilde{F}(r; H) \frac{\mathrm{d}\psi}{\mathrm{d}r} + \tilde{U}(r; H)\psi = 0 \quad (1)$$

HSC method is fast and accurate:

- $\tilde{U}(r; -1)/\Delta^2$ is short ranged
- oscillating behavior is factored out

Found exact boundary conditions for Eq. (1) \implies easy to expand $R_{\ell m \omega}^{\text{in},\text{up}}(r)$:

$$R^{lpha}_{\ell m \omega}(r) = R^{lpha,0}_{\ell m}(r,\omega^0) + \sigma R^{lpha,1}_{\ell m}(r,\omega^0,\omega^1) \qquad lpha = {
m in}, {
m up}$$

⁸Zenginoglu 2011