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Generic Spacetime

(M, g) is a stationary, axi-symmetric, asymptotically flat and 1+3 dimensional spacetime.

Due to the symmetries, together with some gauge choices, we can write,

ds2 = gtt(r , θ)dt2 + 2gtϕ(r , θ)dtdϕ+ gϕϕ(r , θ)dϕ2 + grr (r , θ)dr2 + gθθ(r , θ)dθ2

https://www.vice.com/en/article/8gmy4a/the-learning-corner-805-v18n5

We also assume a Z2 symmetry −→ θ = π/2 plane is a totally geodesic submanifold.
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Circular Causal Orbits on the Equatorial Plane θ = π/2

Effective Lagrangian of a test particle,

2L = gµν ẋ
µẋν = ξ , ξ ≡


−1 , timelike

0 , null

1 , spacelike

Constants of motion associated to the two Killing vectors: E = gtµẋ
µ and L = gϕµẋ

µ.

2L = −A(r ,E , L)

B(r)
+ grr ṙ

2 = ξ

A(r ,E , L) = gϕϕE
2 + 2gtϕEL + gttL

2 , B(r) = g2
tϕ − gttgϕϕ

Effective potential Vξ(r),

Vξ(r) ≡ grr ṙ
2 = ξ +

A(r ,E , L)

B(r)
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Circular Causal Orbits on the Equatorial Plane θ = π/2

A particle will follow a circular orbit at r = r cir iff,

Vξ(r cir) = 0

−→ A(r cir,E , L) = −ξB(r cir)

V ′ξ(r cir) = 0

−→ A′(r cir,E , L) = −ξB ′(r cir)

The radial stability of such orbit can be verified by the sign of V ′′ξ (r cir),

V ′′ξ (r cir) =
A′′(r cir,E , L) + ξB ′′(r cir)

B(r cir)

V ′′ξ (r cir) > 0

Unstable Circular Orbits

V ′′ξ (r cir) < 0

Stable Circular Orbits

For a generic stationary spacetime we can find pairs of solutions corresponding to co-rotating

orbits (r cir
+ ,E+, L+) and counter-rotating orbits (r cir

− ,E−, L−).
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Light-Rings ξ = 0

For null particles, circular orbits are light-rings.

V0(rLR) = 0 −→
[
gϕϕσ

2
± + 2gtϕσ± + gtt

]
LR

= 0

V ′0(rLR) = 0 −→
[
g ′ϕϕσ

2
± + 2g ′tϕσ± + g ′tt

]
LR

= 0

Solving both equations gives the inverse impact parameter σ± = E±/L± and the radial

coordinate of the light-ring, r = rLR.

The radial stability of the light-ring is evaluated by checking the sign of V ′′0 (rLR),

V ′′0 (rLR) = L2
±

[
g ′′ϕϕσ

2
± + 2g ′′tϕσ± + g ′′tt
g2
tϕ − gttgϕϕ

]
LR

Positive Numerator

Unstable Light Ring

Negative Numerator

Stable Light Ring
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Timelike Circular Orbits ξ = −1

Angular velocity of timelike particles, Ω =
dϕ

dt
= − Egtϕ + Lgtt

Egϕϕ + Lgtϕ

First equation: V−1(r cir) = 0,

E± = −gtt + gtϕΩ±√
β±

∣∣∣∣∣
r cir

, L± =
gtϕ + gϕϕΩ±√

β±

∣∣∣∣∣
r cir

β± = −gtt − 2gtϕΩ± − gϕϕΩ2
±

Second equation: V ′−1(r cir) = 0,

[
g ′ϕϕΩ2

± + 2g ′tϕΩ± + g ′tt
]
r cir = 0 −→ Ω± =

[
−g ′tϕ ±

√
C (r)

g ′ϕϕ

]
r cir

C (r) = (g ′tϕ)2 − g ′ttg
′
ϕϕ
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Timelike Circular Orbits ξ = −1

Radial Stability, V ′′−1(r cir) =

[
g ′′ϕϕE

2
± + 2g ′′tϕE±L± + g ′′ttL

2
± − (g2

tϕ − gttgϕϕ)′′

g2
tϕ − gttgϕϕ

]
r cir

STCOs

V ′′−1(r) < 0

IS
C

O

UTCOs

V ′′−1 > 0

For a generic ultra-compact object there may several

solutions of V ′′−1(r cir) = 0.

Standard ISCO

Solution with the largest r such that,

V ′′−1(r ISCOstd ) = 0 ∧ V ′′′−1(r ISCOstd ) < 0
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Timelike Circular Orbits in the vicinity of Light-Rings

Main Result

The stability of a light-ring determines the possibility and the radial stability of timelike

circular orbits around it.

First, we realize that β± = 0 corresponds to a light-ring.

β±|r cir =
[
−gtt − 2gtϕΩ± − gϕϕΩ2

±
]
r cir = 0 −→ Ω±|r cir = σ±

β± = 0 will imply the existence of a light-ring if V ′0(r cir) = 0

V ′0(r cir) =
[
g ′ϕϕσ

2
± + 2g ′tϕσ± + g ′tt

]
r cir

Ω±|rcir =σ±−−−−−−−→
V ′−1(r cir)=0

V ′0(r cir) = 0

Thus,

β±|LR = 0
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Timelike Circular Orbits in the vicinity of Light-Rings

For a timelike particle, we know that: (E±, L±) ∝ 1/
√
β±

On a region close to a light-ring,

• If β± < 0, then (E±, L±) ∈ C −→ TCOs forbidden.

• If β± > 0, then (E±, L±) ∈ R −→ TCOs allowed.

Taylor expansion of β± around the light-ring,

β±(r) = β′±(rLR
± )δr +O(δr2) , δr ≡ r − rLR

±

In the end,

β±(r) =
V ′′0 (rLR

± )

L2
±

[(
g2
tϕ − gttgϕϕ

)3

(g ′tϕ)2 − g ′ttg ′ϕϕ

]1/2

LR

δr +O(δr2)
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Timelike Circular Orbits in the vicinity of Light-Rings

Unstable light-ring: V ′′0 (rLR
± ) > 0

TCOs allowed

β±(r) > 0

Unstable
L

R

TCOs forbidden

β±(r) < 0

Stable light-ring: V ′′0 (rLR
± ) < 0

TCOs forbidden

β±(r) < 0

Stable
L

R

TCOs allowed

β±(r) > 0
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Timelike Circular Orbits in the vicinity of Light-Rings

Radial stability of timelike circular orbits,

V ′′−1(r) =
g ′′tt (gtϕ + Ω±gϕϕ)2 − 2g ′′tϕ(gtt + Ω±gtϕ)(gtϕ + Ω±gϕϕ) + g ′′ϕϕ(gtt + Ω±gtϕ)2

β±(g 2
tϕ − gttgϕϕ)

−
(g 2

tϕ − gttgϕϕ)′′

g 2
tϕ − gttgϕϕ

At a light-ring, the numerator can be simplified to,

V ′′0 (rLR
± )

(g2
tϕ − gttgtϕ)2

L2
±

Thus, the sign of the numerator is dictated by the stability of the light-ring, V ′′0 (rLR
± ).
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Timelike Circular Orbits in the vicinity of Light-Rings
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Corollaries

Ultra-compact Horizonless objects

Unstable
ligh

t-rin
g

Stable light-rin
g

STCOs

No TCOs

UTCOs

Black Holes

Unstable
light-rin

g

Horizo
n

No TCOs

UTCOs
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Efficiency

Efficiency

Amount of gravitational energy which is converted into radiation as a timelike particle falls

down from infinity until the ISCO.

ε = 1− EISCO

STCOs

UTCOs

r ISCOstd → εstd

r ISCOabs → εabs

STCOs

UTCOs

No COs
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Stars

Spinning Scalar Boson Stars

Ψ = φe i(mϕ−ωt)

Phys. Rev. Lett. 123, 221101 (2019)

Spinning Vector Boson Stars

A =

(
iVdt +

H1

r
dr + H2dθ + iH3 sin θdϕ

)
e i(mϕ−ωt)

Phys. Rev. Lett. 123, 221101 (2019)
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Mini-Boson Stars m = 1

S =

∫
d4x
√
−g
[

R

16π
− gµν∂µΨ∗∂νΨ− µ2Ψ∗Ψ

]

Co-rotating orbits

Structure of Circular Orbits
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µ

]
Counter-rotating orbits

Structure of Circular Orbits

 0

 0.1

 0.2

 0.3

 0  3  6  9  12

H
1

m
a
x

rµ
P

No TCOs

UTCOsU
TC

O
s

STCOs

IS
C

O
a
b
s

ISCO
std

ISCO
std

LRs

Efficiency

 0

 0.1

 0.2

 0.3

 0  0.2  0.4  0.6  0.8  1

H
1

m
a
x

ε = 1 - E
ISCO

ε
abs

ε
std

ε
std

20



Final Remarks - Timelike Circular Orbits

We shown that for a very generic stationary, axisymmetric and asymptotically flat compact

objects with a Z2 symmetry,

Unstable TCOs

V ′′−1(r) > 0

Unstable
L

R

TCOs forbidden

β±(r) < 0

TCOs forbidden

β±(r) < 0

Stable
L

R

Stable TCOs

V ′′−1(r) < 0
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Final Remarks - Timelike Circular Orbits

Ultra-compact Horizonless objects

Unstable
ligh

t-rin
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Final Remarks - Efficiency

Spinning Scalar Boson Stars

Absolute Efficiency εabs

→ For both co- and counter-rotating orbits,

the efficiency can grow arbitrarily close to

unity.

Standard Efficiency εstd

→ Co-rotating orbits show larger efficiencies

than counter-rotating orbits.

Spinning Vector Boson Stars

Absolute Efficiency εabs

→ For both co- and counter-rotating orbits, it

is possible to have stable TCOs until the

center of the star.

→ The efficiency increases monotonically

towards values close to 100%.

Standard Efficiency εstd

→ For counter-rotating orbits, more compact

stars can have disconnected regions of

unstable TCOs.

→ The efficiency can drop to small values.
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Thank you.

jorgedelgado@ua.pt
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Generic Spacetime

(M, g) is a stationary, axi-symmetric, asymptotically flat and 1+3 dimensional spacetime.

• Two Killing vectors: {η1, η2}
asymptotically−−−−−−−−→

flatness
[η1, η2] = 0.

• Appropriated coordinate system (t, r , θ, ϕ) such that η1 = ∂t and η2 = ∂ϕ.

We assume,

1. A north-south Z2 symmetry.

2. Circularity. −→ gρt = gρϕ = 0 , ρ = {r , θ}

Gauge choice:

? r and θ are orthogonal.

? Horizon located at constant radial coordinate: r = rH .
−→ grθ = 0 , grr > 0 , gθθ > 0

Causality implies gϕϕ ≥ 0

ds2 = gtt(r , θ)dt2 + 2gtϕ(r , θ)dtdϕ+ gϕϕ(r , θ)dϕ2 + grr (r , θ)dr2 + gθθ(r , θ)dθ2
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Mini-Boson Stars m = 2
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Gauged Boson Stars qE = 0.6
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Axion Boson Stars fa = 0.05

S =
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R
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]
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Axion Boson Stars fa = 0.03
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Black Holes

Kerr Black Holes with Synchronised

Axionic Hair
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Kerr Black Holes with Synchronised Axionic Hair fa = 0.05

Co-rotating orbits
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Einstein-scalar-Gauss-Bonnet Black Holes
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Einstein-scalar-Gauss-Bonnet Black Holes
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Final Remarks - Efficiency

Kerr Black Holes with Synchronised

Axionic Hair

New disconnected regions of unstable and no

TCOs develop.

Co-rotating orbits (Ω+)

→ The efficiency can be much larger than the

maximal efficiency for Kerr black holes and

can grow close to the unity.

Counter-rotating orbits (Ω−)

→ The efficiency is smaller than the one for

co-rotating orbits, but it can be higher

than the maximal efficiency for

(counter-rotating) Kerr black holes.

Einstein-scalar-Gauss-Bonnet Black Holes

The structure of circular orbits is identical to

Kerr black holes.

Co-rotating orbits (Ω+)

→ For small j , the efficiency is slightly larger

than a Kerr black hole with the same j

→ The opposite happens for large j .

Counter-rotating orbits (Ω−)

→ The efficiency is larger than their Kerr

counterpart, but the differences decreases

as j increases.
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