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Motivation

Ultra-compact Horizonless objects
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Motivation

Ultra-compact Horizonless objects

Phys.Rev.Lett. 119 (2017) 25, 251102 Black Holes
N . Phys.Rev.Lett. 124 (2020) 18, 181101
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Motivation

Ultra-compact Horizonless objects
Black Holes
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Ultra-compact Horizonless objects
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Due to the symmetries, together with some gauge choices, we can write,

ds® = gu(r, 9)dt2 + 28, (r, 0)dtdp + gou(r, 9)dcp2 + g (r, H)dr2 + goo(r, 9)do92
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(M, g) is a stationary, axi-symmetric, asymptotically flat and 143 dimensional spacetime.

Due to the symmetries, together with some gauge choices, we can write,

ds® = gu(r, 9)dt2 + 28, (r, 0)dtdp + gou(r, 9)dcp2 + g (r, H)dr2 + goo(r, 9)do92
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We also assume a Z, symmetry —> 0 = /2 plane is a totally geodesic submanifold.
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Effective Lagrangian of a test particle,
—1, timelike

2L=guxI'x"' =&, £€=40 ) null

1 ., spacelike

Constants of motion associated to the two Killing vectors: E = gy, x* and L = g, x*.

A(r,E, L)
B(r)
A(r E, L) = gppoE® + 28:,EL + geel® ,  B(r) = g7, — 8et8py

= — + g, PP =¢

Effective potential V¢(r),

A(r,E,L)

Vf(r)Egrrr.2:£+ B(r)
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For a generic stationary spacetime we can find pairs of solutions corresponding to co-rotating
orbits (r§", E;, L) and counter-rotating orbits (ro", E_, L_).
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Radial Stability, ~ V/;(r) = [g¢w
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gtgp — 8tt8opyp
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For a generic ultra-compact object there may several
solutions of V", (r") = 0.

Standard ISCO
Solution with the largest r such that,

VIR =0 A V(r9) <0
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If C(r°") < 0 then no circular (timelike, null or spacelike) geodesics are possible since Q1 € C

Absolute ISCO

STCOs
K Solution with the smallest r such that,
& No COs 'x‘ﬁ\
q ‘ ‘-._g C(rSw)y =0 A V" (rSCw 4 |5r]) <0, dr< 1
"-‘ .:. or the solution with the smallest r such that,
~, C(r)<o0
5 Vill(rISCOabs) = A Vi/?l(rlscoabs) <0

.
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Main Result
The stability of a light-ring determines the possibility and the radial stability of timelike
circular orbits around it.

First, we realize that S+ = 0 corresponds to a light-ring.

B+

peir — [_gtt - zgﬂin - g‘ﬂ‘PQi]rmr =0 — Qi‘rd’ =0+

B+ = 0 will imply the existence of a light-ring if V{(r<") =0
Qil,cqr=0+

V/ rcir :0
s V)

Vo(r") = [8L,0% +28{,0+ + 8]

Thus,
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e If 54 >0, then (Ex,LL) € R — TCOs allowed.

Taylor expansion of 5+ around the light-ring,

Bi(r) = BL(rE)or + O6r?) , 6r=r—rtR

In the end,

5r+(9(5r2)

3-1/2
V() [(gi@ — 88y ]

“Bi r) =
() L | (8tp)” — &ie8ly |
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Unstable light-ring: V{/(ri?) >0

TCOs allowed
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Radial stability of timelike circular orbits,
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Timelike Circular Orbits in the vicinity of Light-Rings

Radial stability of timelike circular orbits,

_ &g + Q1800)” — 2815 (8n + Qigro)(8re + Qi8op) + 85, (81 + igre)’ (88 — u8pv)”
Bi(&ty — E1e8py) 8ty — B8y

V7i(r)

At a light-ring, the numerator can be simplified to,
2 2
LR (85, — gttgtw)
V(;/(r:t ) - L2
+

Thus, the sign of the numerator is dictated by the stability of the light-ring, V§'(rtR).
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Timelike Circular Orbits in the vicinity of Light-Rings

Unstable light-ring: V{/(rAR) >0 Stable light-ring: V{§'(rf?) <0

TCOs forbidden

R <
".‘ .(}0( o ..‘J}
4 . By 3 o
s TCOs forbidden "% & Stable TCOs %
i 1= 3 e
. Bi(r)<0  F s, VA(<o ¢
‘.‘ 0” ‘.0 Q..
px(r) <0
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Ultra-compact Horizonless objects
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Efficiency

Efficiency
Amount of gravitational energy which is converted into radiation as a timelike particle falls
down from infinity until the ISCO.
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Spinning Scalar Boson Stars

V= ¢ef(m<pfwt)

5}

/

4

Phys. Rev. Lett. 123, 221101 (2019)
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Spinning Scalar Boson Stars Spinning Vector Boson Stars

v = ge'lmeme) A= (int 5 ?dr + H2d0 + iH3 sin ed¢> eflme=et)

Phys. Rev. Lett. 123, 221101 (2019) Phys. Rev. Lett. 123, 221101 (2019)
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Mini-Boson Stars m =1

S'= /d4x\/ [ — g oV oV — PV w}
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Mini-Boson Stars m =1
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Mini-Boson Stars m =1
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Final Remarks - Timelike Circular Orbits
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Final Remarks - Timelike Circular Orbits

Ultra-compact Horizonless objects
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Final Remarks - Efficiency

Spinning Scalar Boson Stars
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Absolute Efficiency €aps
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the efficiency can grow arbitrarily close to
unity.
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Final Remarks - Efficiency

Spinning Vector Boson Stars

Absolute Efficiency €,ps
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Final Remarks - Efficiency

Spinning Scalar Boson Stars

Absolute Efficiency €aps
— For both co- and counter-rotating orbits,
the efficiency can grow arbitrarily close to
unity.
Standard Efficiency cqq
— Co-rotating orbits show larger efficiencies
than counter-rotating orbits.

Spinning Vector Boson Stars

Absolute Efficiency €,ps

— For both co- and counter-rotating orbits, it
is possible to have stable TCOs until the
center of the star.

— The efficiency increases monotonically
towards values close to 100%.

Standard Efficiency cgq

— For counter—rotating orbits, more compact
stars can have disconnected regions of

— The efficiency can drop to small values.
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Generic Spacetime

(M, g) is a stationary, axi-symmetric, asymptotically flat and 143 dimensional spacetime.

asymptotically
—_—

e Two Killing vectors: {n1,m} P [m1,m2] = 0.

e Appropriated coordinate system (t, r, 6, ) such that n; = 9; and 17, = 0,,.
We assume,

1. A north-south Z, symmetry.
2. Circularity,. — gy =8y, =0, p={r, 0}

Gauge choice:

* r and 0 are orthogonal.
. . . — ngZOagrr>O7g96>0
* Horizon located at constant radial coordinate: r = ry.

Causality implies g, > 0

ds® = gue(r, 9)dt2 + 28, (r, 0)dtdp + gou(r, 9)d<p2 + g (r, G)dr2 + goo(r, 9)d92
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Axion Boson Stars f, = 0.05

—[ R - 2151,
5= [ dxvs [mﬁ—g“ VAN — V(W) . V(9)= 5"

28



Axion Boson Stars £, = 0.05
/ . ¢
1—4/1—4Bsin? (y)}

R nz * 2 gfa
§= /d4x«/7—g {167 — g oo,V — V(\\U2|)} , V(¢) = MT

Co-rotating orbits

Structure of Circular Orbits

/jf

STCOs

28



Axion Boson Stars £, = 0.05
/ . ¢
1—4/1—4Bsin? (y)}

Structure of Circular Orbits Efficiency

S= /d4x¢fg L% gAY — V(\w2|)} . V()= e

Co-rotating orbits

/jf

STCOs

15 0 02 0 08 1

.4 0.6
e=1-Eco
28



Axion Boson Stars £, = 0.05
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Black Holes
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Final Remarks - Efficiency

Kerr Black Holes with Synchronised
Axionic Hair

New disconnected regions of and no
TCOs develop.
Co-rotating orbits (€2.)

— The efficiency can be much larger than the
maximal efficiency for Kerr black holes and
can grow close to the unity.

Counter-rotating orbits (Q2_)

— The efficiency is smaller than the one for

co-rotating orbits, but it can be higher

than the maximal efficiency for
(counter-rotating) Kerr black holes.

The structure of circular orbits is identical to
Kerr black holes.
Co-rotating orbits (2.)

— For small j, the efficiency is slightly larger
than a Kerr black hole with the same j

— The opposite happens for large .
Counter-rotating orbits (Q_)

— The efficiency is larger than their Kerr
counterpart, but the differences decreases
as j increases.
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