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Abstract

General Relativity Theory (GRT) provides a framework to 
compute the most precise orbits of Earth satellites. Four 
satellites are needed to locate a user in Relativistic 
Positioning Systems (RPS). In 2014, Puchades and Sáez
(Astrophys. Space Sci. 352, 307, 2014) computed the 
difference in positioning taking satellites world lines with 
Schwarzschild metric and with a statistical perturbation of 
such world lines. Such differences are named the 
U-errors. To compute the photons null geodesics of the 
satellites signals they used the solution given by Coll, 
Ferrando and Morales Lladosa (Class. Quantum Grav. 
27, 065013, 2010). 



Abstract

Our team (Puchades, Arnau and Fullana, Astrophys. 

Space Sci., Volume(366):66 (19pp), 2021) has taken 

more accurate satellites trajectories as perturbations of 

Schwarzschild world lines. These more accurate 

trajectories consider the gravitational effects of the Earth, 

the Moon and the Sun, and the Earth oblateness. 



Abstract

A robust algorithm has been built to compute the U-errors 

with this more accurate description of satellites orbits. We 

are now incorporating more relativistic perturbations in the 

metric to describe the satellites world lines. Our method is 

applied to the ESA Galileo Satellites Constellation (h = 

23222 Km). However, our algorithm is also applied to 

other satellites at different heights. In this presentation a 

summary of this research is given.



Introduction

1) Determine the orbits of 4 satellites

2) Compute the proper times at some user’s position

3) Then one has the user’s position

4) Do it with different descriptions of the 4 orbits

5) Compute the difference of positioning

6) Such differences are the positioning errors, U-errors

7) Plot the HEALPIx mollweide representation of such
errors in a spherical surface



𝑔𝑔00 = − 1 − 2 𝜔𝜔0 𝑡𝑡, 𝐱𝐱 + 𝜔𝜔𝐿𝐿 𝑡𝑡, 𝐱𝐱 = − 1 − 2 Φ
𝑔𝑔0𝑖𝑖= 0,
𝑔𝑔𝑖𝑖𝑖𝑖= 𝛿𝛿𝑖𝑖𝑖𝑖 1 + 2 𝜔𝜔0 𝑡𝑡, 𝐱𝐱 + 𝜔𝜔𝐿𝐿 𝑡𝑡, 𝐱𝐱 = 𝛿𝛿𝑖𝑖𝑖𝑖 1 + 2Φ

𝜔𝜔0=  Φ=∑B ФB = G  ∑𝐵𝐵
𝑀𝑀𝐵𝐵
𝑟𝑟𝐵𝐵

; B=Earth, Moon and Sun
2𝜔𝜔𝐿𝐿= Φ𝐽𝐽2 Earth quadrupole potential

Positioning a satellite in RPS: Metric:
(GRT from the beginning)



RPS: Timelike Geodesic Equations of Satellites

𝑑𝑑𝑑𝑑𝛼𝛼

𝑑𝑑τ
= − Γμν𝛼𝛼𝑑𝑑μ𝑑𝑑ν

𝑑𝑑𝑑𝑑0

𝑑𝑑τ
=

1
1 −Φ

Φ,𝑖𝑖𝑑𝑑0𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑0

𝑑𝑑τ
= 𝑑𝑑0

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑τ
=

1
1 + Φ

1
2
Φ,𝑘𝑘 𝑑𝑑0𝑑𝑑0 + 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑘𝑘(Φ,𝑖𝑖𝑑𝑑𝑖𝑖)

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑τ
= 𝑑𝑑𝑘𝑘

Constraint:𝑔𝑔 𝑑𝑑,𝑑𝑑 = −1



RPS: Timelike Geodesic Equations of Satellites

• Those equations are in pseudo-cartesian isotropic GCRS (Geo-
Centre)

• Numerical integration of the ODE

• Runge-Kutta method: Accuracy 10−18

• Using 40 significant digits



Motion of Celestial Bodies

Sufficient considering Newtonian movement

𝑑𝑑𝑑𝑑𝑘𝑘𝐸𝐸
𝑑𝑑τ

= 𝑣𝑣𝑘𝑘𝐸𝐸𝑑𝑑0

𝑑𝑑𝑣𝑣𝑘𝑘𝐸𝐸
𝑑𝑑τ

= −𝐺𝐺
𝑀𝑀𝑠𝑠 𝑑𝑑𝑘𝑘𝐸𝐸 − 𝑑𝑑𝑘𝑘𝑆𝑆

𝐱𝐱𝐸𝐸 − 𝐱𝐱𝑆𝑆 3 𝑑𝑑0 − 𝐺𝐺
𝑀𝑀𝑀𝑀(𝑑𝑑𝑘𝑘𝐸𝐸 − 𝑑𝑑𝑘𝑘𝑀𝑀)

𝐱𝐱𝐸𝐸 − 𝐱𝐱𝑀𝑀 3 𝑑𝑑0

Corresponding Eqs. for Sun and Moon



RESULTS: Sun + Moon (at Gallileo Sat. distance)

~ 600m Moon (Blue, shifts the satellite position after one period)
~ 200m Sun (Orange,  recover the radial distance in 1 or 2 periods)

~ 700m Sun + Moon (Magenta)
Coincide with Teunissen & Montenbruck (2015) 



RESULTS: Earth oblateness (at Gallileo Sat. distance)

~ 2km Earth oblateness (green,  recover the radial distance in 1 or 2 periods)
~ 3Km (purple)  Earth oblateness + Sun + Moon



RESULTS: Different orbital radius from GCRS

At 5 × 104 Km. Compatible with figure of Montenbruck & Gill (2005)
Earth oblateness (green), Moon (blue), Sun (red), Moon + Sun (magenta) and
Earth oblateness + Moon + Sun (violet).



RESULTS: Different orbital radius from GCRS

At 1.5 × 105 Km 
As orbital radius increases:

Earth oblateness dicreases (orange) and Sun (red) & Moon (blue) increases
As nearer the Moon is, greater Moon effect than Sun one is



RESULTS: Different orbital radius from GCRS

Radial distance / orbital distance
As orbital radius increases: Sun & Moon effect increases



RESULTS: Different orbital radius from GCRS

Radial distance / orbital distance
As orbital radius increases: Earth oblateness effect dicreases



Montenbruck, O. Gill, E., 2005. Satellite Orbits: Models, Methods and Applications, 
Springer-Verlag, Heldeberg, Germany. Springer, ISBN-13: 978-3540672807



U-errors

Emission coordinates: 𝜏𝜏𝐴𝐴

which are not to be varied since they are broadcasted by the satellites and
received by the user without ambiguity 

Nominal coordinates, described in Schwarzschild ST:  𝑑𝑑𝛼𝛼(𝜏𝜏𝐴𝐴)

Perturbed satellite world lines in the space-time:

TX-code gives new inertial coordinates:  [𝑑𝑑𝛼𝛼+∆(𝑑𝑑𝛼𝛼)](𝜏𝜏𝐴𝐴)

Both coordinates are to be compared:

U-errors: ∆𝑑𝑑=[∆2 𝑑𝑑1 + ∆2 𝑑𝑑2 + ∆2 𝑑𝑑3 ]1/2

Same emission coordinates, which are received from the satellites, but from
different satellite world lines. 

Improvement: most accurate description of satellite perturbations using a 
metric which better accounts of a more accurate trajectory of the satellites. 



The perturbations computed here using metrics improve
our previous works based on statistical methods as:

1) A better description of the real satellite world lines is achieved.

2) The effect of each perturbing contribution in the satellite world
lines is studied.

3) Also, the combination of two of the three terms in the metric is
studied and the three of them together. So, the orbits of the satellites
are described depending on the terms considered.

4) Therefore, the contribution of each effect on the user's positioning
can also be studied.

5) The value of the U-errors is now smaller.

6) That means a more precise computation of the user's positioning.



Present work
• Consider more perturbations in the metric and 

see the effects in the computations of the orbits 
of satellites. Then do the RPS computations, 
U-errors. 

• GRT is used from the beginning. No Newtonian 
computation with GRT perturbations. 



Perspectives

• The use of our method in space navigation 

is being planned. The Barycentric Celestial 

Reference System is more appropriate as 

reference system to locate the emitters 

(four satellites…) in the solar system.



Perspectives
• For example, in the vicinity of the Moon, 

two emitters fixed on the Moon surface 
(North and South poles) and two emitters 
from Galileo satellites. 

• The positioning of a spacecraft that 
navigates in the solar system could be 
determined considering emitters in other 
appropriate locations to be studied.
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