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Overview

In this presentation, I will display some analytical results, concerning the Callan Myers Perry
black hole.

I will provide analytical expressions for some quasinormal frequencies in this black hole.

• Eikonal limit −→ Already done earlier today

• Asymptotic limit −→ Target of this presentation
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Quasinormal modes and frequencies

Master equation

d2ψ

dx2
+
(
ω2 − V

)
ψ = 0 (1)

• lim
x→+∞

ψ(x) ∝ e−iωx

• lim
x→−∞

ψ(x) ∝ e iωx
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Callan Myers Perry black hole

Metric tensor field

ds2 = −fdt ⊗ dt +
1

f
dr ⊗ dr + r2d2Ωd−2 (2)

• f (r) = f0(r)
(
1 + λ′δf

)
, λ′ ∝ α′

R2
h

• f0(r) = 1−
(
Rh

r

)d−3

• δf (r) = −(d − 3)(d − 4)

2

(
Rh

r

)d−3

1−
(
Rh
r

)d−1

1−
(
Rh
r

)d−3
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Scalar and gravitational perturbations

Scalar perturbations −→ Vs [Cardoso and Lemos 2002]

Tensor type gravitational perturbations −→ Vg [Moura and Schiappa 2006]

• Vs(r) = f

(
l(l + d − 3)

r2
+

(d − 2)(d − 4)f

4r2
+

(d − 2)f ′

2r

)

• Vg (r) = Vs(r) + λ′C (r)
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Asymptotic limit

• The asymptotic limit targets quasinormal frequencies ω such that |<(ω)| � |=(ω)|.

• This limiting case poses an operational problem in imposing the appropriate boundary
conditions.

• Solution: Monodromy method. [Motl and Neitzke 2003] [Natário and Schiappa 2004]
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Monodromy method I

• Analytic continuation to the complex r -plane.

• We pick two closed homotopic curves in the complex r -plane, enclosing the event horizon.
We consider the monodromy of the perturbation, associated with a full loop around these
curves.

• In one monodromy, we encode the information of the boundary condition in the event
horizon. In the other one, we encode the information of the boundary condition in spatial
infinity.
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Monodromy method II

Monodromy theorem

=⇒

Homotopic curves share the same monodromy

Final result

Equation to solve for the quasinormal frequencies.
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Perturbative approach

Perturbative approach

ψ(z) = ψ0 + λ′ψ1 ; V (z) = V0(z) + λ′V1(z) ; x 7→ z (3)

• d2ψ0

dz2
(z) + (ω2 − V0(z))ψ0(z) = 0

• d2ψ1

dz2
(z) + (ω2 − V0(z))ψ1(z) = ξ(z)
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Big contour and Stokes lines

Rh <(r)

=(r)

D
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Zooming near the origin

<(r)

=(r)
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Behaviour near the origin I

Expanding V0(r) and ξ(r) near r = 0 yields

ψ0(z) = A+

√
2π
√
ωzJ j

2
(ωz) + A−

√
2π
√
ωzJ− j

2
(ωz) (4)

for some A± ∈ C. Using the Wronskian method yields

ψ1(z) = A+

√
2π
√
ωzJ j

2
(ωz)C+(z) + A−

√
2π
√
ωzJ− j

2
(ωz)C−(z). (5)
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Behaviour near the origin II

• We are interested in a 3π
d−2 Radians rotation in the complex r -plane.

• In the complex z-plane this rotation amounts to 3π Radians.

• We only need to compute the change of the ψ0 and ψ1 under this rotation.
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Asymptotic matching

WKB approximation

ψ(z) ∼ C+e
iωz + C−e

−iωz (6)

Using known asymptotic expansions agrees with the WKB approximation!

ψ(z) = ψ0(z) + λ′ψ1(z) ∼ Ω+(A+,A−)e iωz + Ω−(A+,A−)e−iωz (7)
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Boundary condition

Rh <(r)

=(r)

D

U
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Closing the contour

• As we abandon the Stokes line we can no longer rely on the WKB approximation to track
the behaviour of ψ.

• Small corrections become important given that |e iωx | � 1.

• WKB theory tells us that the dominant term (proportional to e−iωx) remains unchanged.

• Using this information we can finally close the contour and compute the monodromy of ψ.
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Small contour

Rh <(r)

=(r)
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Solution near Rh and monodromy

Expanding V near Rh allow us to analytically solve the master equation yielding

ψ(x) = B+e
iωx + B−e

−iωx (8)

for some B± ∈ C. Imposing the boundary condition yields

B− = 0 =⇒ ψ(x) = B+e
iωx . (9)

Now we can compute the monodromy of ψ around the small contour.

Important

The tortoise variable has a branch point in the event horizon Rh.
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Equating monodromies I

Final result
ω

TH
= ln(3) + (2k + 1)πi + λδ , k ∈ N (10)

• Gravitational perturbations −→ δ =

(
4π

d − 3

)2

T 2
H

[
d − 3

d − 2

(2k + 1)

4

] d−1
d−2

ΠT e
d−5

2(d−2)
πi

• Scalar test fields −→ δ =

(
4π

d − 3

)2

T 2
H

[
d − 3

d − 2

(2k + 1)

4

] d−1
d−2

ΠS e
d−5

2(d−2)
πi
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Equating monodromies II

Both constants ΠS and ΠT depend heavily on the dimension.

• ΠT =
2
√
π

3

(d(d − 5) + 2)(d − 4)

d − 1

Γ
(

1
2(d−2)

)
Γ
(

d−3
2(d−2)

)
Γ
(

d−1
2(d−2)

)2
sin

(
π

d − 2

)

• ΠS =
8

3

(d − 4)(d − 3)(d − 2)

d − 1

π2

2
1

d−2

Γ
(

1
d−2

)
[
Γ
(

d−1
2d−4

)]4
sin

(
π

2(d − 2)

)
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Conclusion

• The results obtained do converge to the uncorrected ones under the limit λ′ → 0.

• It would be interesting to compare these results with numerical data.

Thank you for your attention!
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