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In this presentation, | will display some analytical results, concerning the Callan Myers Perry
black hole.

| will provide analytical expressions for some quasinormal frequencies in this black hole.

® Eikonal limit —— Already done earlier today

® Asymptotic limit ——  Target of this presentation
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Quasinormal modes and frequencies

Master equation
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Callan Myers Perry black hole

Metric tensor field I

o f(r)="1fo(r) (L+N6f) , N x —5
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Scalar and gravitational perturbations

Scalar perturbations — Vi [Cardoso and Lemos 2002]

Tensor type gravitational perturbations — V; [Moura and Schiappa 2006]

Il+d—=3) (d—2)(d—4)f (d-2)f
© Vi(r)=f < r2 + 4r2 + 2r >

o Vo(r)= Vs(r)+ NC(r)
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Asymptotic limit

® The asymptotic limit targets quasinormal frequencies w such that |R(w)| < |S(w)].

® This limiting case poses an operational problem in imposing the appropriate boundary
conditions.

® Solution: Monodromy method. [Motl and Neitzke 2003] [Natario and Schiappa 2004]
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Monodromy method |

® Analytic continuation to the complex r-plane.

® We pick two closed homotopic curves in the complex r-plane, enclosing the event horizon.
We consider the monodromy of the perturbation, associated with a full loop around these
curves.

® In one monodromy, we encode the information of the boundary condition in the event
horizon. In the other one, we encode the information of the boundary condition in spatial
infinity.
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Monodromy method I

Monodromy theorem

I

Homotopic curves share the same monodromy

Final result
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Perturbative approach

Perturbative approach I

2
. 970
dz?

(2) + (w? = Vo(2))to(2) = 0
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dz?

(2) + (W? = Vo(2))¥1(2) = £(2)
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Big contour and Stokes lines
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Zooming near the origin

/ R(r)
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Behaviour near the origin |

Expanding Vo(r) and &(r) near r = 0 yields

Yo(z) = A+\/%\/EJ£ (wz) + A,\/ﬂ\/ﬁj_%(wz) (4)

for some AL € C. Using the Wronskian method yields

91(2) = AV 22y (@2)C4 (2) + AV ImVz)_ (w2)C-(2). (5)
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Behaviour near the origin Il

® \We are interested in a % Radians rotation in the complex r-plane.

® |n the complex z-plane this rotation amounts to 37 Radians.

® We only need to compute the change of the g and 1 under this rotation.
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Asymptotic matching

WKB approximation I

Using known asymptotic expansions agrees with the WKB approximation!

U(2) = Yo(2) + N(2) ~ Qi (A, AL)e™? +Q_(Ay, Al)e™* (7)
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Boundary condition
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Closing the contour

As we abandon the Stokes line we can no longer rely on the WKB approximation to track
the behaviour of .

Small corrections become important given that |e“X| < 1.

WKB theory tells us that the dominant term (proportional to e~***) remains unchanged.

Using this information we can finally close the contour and compute the monodromy of .
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Solution near R, and monodromy

Expanding V near Rj allow us to analytically solve the master equation yielding

Y(x) = By el + B_e (8)

for some By € C. Imposing the boundary condition yields

B. =0 = ¢(x) = B, e, (9)

Now we can compute the monodromy of 1 around the small contour.

Important
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Equating monodromies |

Final result |
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® Gravitational perturbations — § = <

d—

. 4 \? d—30k+1)]2 dos
® Scalar test fields — 6 = (d — 3) T% [d—24 Mg e2(d=2)

-
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Equating monodromies ||

Both constants [g and N+ depend heavily on the dimension.

NN IR R Rl € cee) M ), sin (575
3 d—1 () d—2
. Bd=4)(d-3)(d-2) 7 M (%)
S—13 1

3 d—1 a3 |:r(d1>]45in <2(dﬂ_ 2)>
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Conclusion

® The results obtained do converge to the uncorrected ones under the limit \' — 0.

® |t would be interesting to compare these results with numerical data.
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