Null shells: general matching across null boundaries and matching across Killing horizons

Miguel Manzano (joint work with Marc Mars)

Fundamental Physics and Mathematics Institute

University of Salamanca

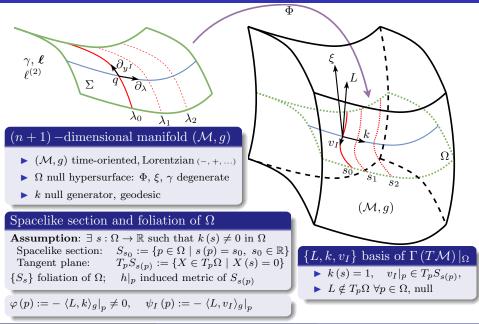
miguelmanzano06@usal.es

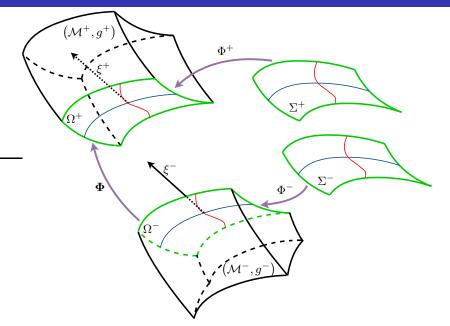
marc@usal.es

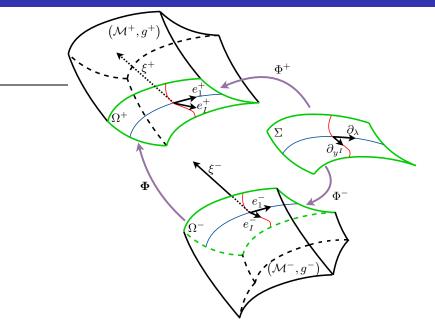
February 1, 2021

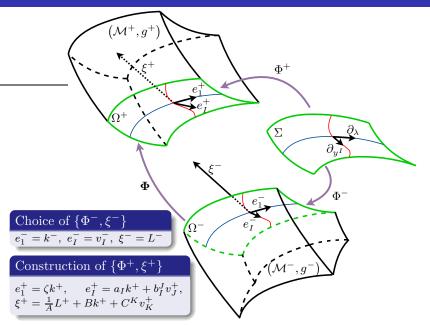
- 1 Introduction: geometric objects
- 2 General matching of two spacetimes across their null boundaries
- Matching across Killing horizons: Killing vectors identified
- Explicit examples: plane-fronted impulsive wave

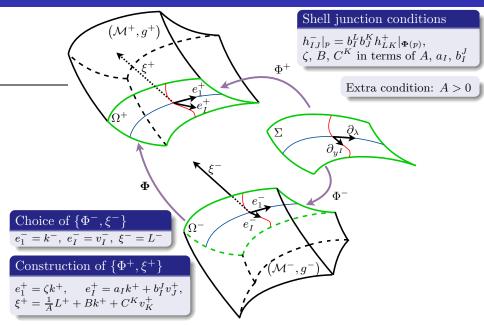
Introduction: geometric objects

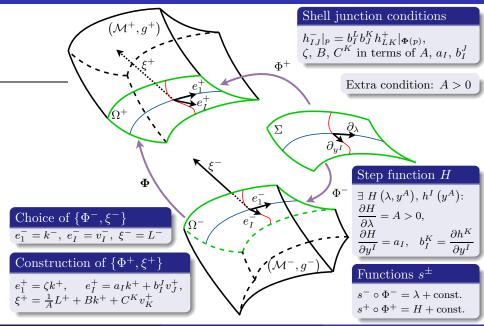












Miguel Manzano, Marc Mars

Null shells: matching of spacetimes

Previous considerations

- ▶ \mathscr{H}_{η}^{\pm} Killing horizons with respect to the Killing vector fields η^{\pm}
- ▶ Requirement: $\Omega^{\pm} := \overline{\mathscr{H}}_{\eta}^{\pm}$ are smooth connected (null) hypersurfaces
- ► Assumption: κ_{η}^{\pm} constant on Ω^{\pm} (with full generality, we take $\kappa_{\eta}^{\pm} \ge 0$)

Matching: Killings η^{\pm} identified

 $\begin{array}{ll} & \eta^{\pm} \stackrel{\Omega^{\pm}}{=} F^{\pm}k^{\pm}, \quad \text{where} \quad F^{\pm} \stackrel{\Omega^{\pm}}{=} f^{\pm} + \kappa_{\eta}^{\pm}s^{\pm}, \quad k^{\pm}\left(f^{\pm}\right) \stackrel{\Omega^{\pm}}{=} 0, \\ & \bullet \text{ The map } \Phi \text{ relates } \eta^{\pm} \implies \quad \mathrm{d}\Phi\left(\eta^{-}\right) \stackrel{\Omega^{+}}{=} a\eta^{+}, \quad a \neq 0, \quad a \in \mathbb{R} \\ & F^{-} \stackrel{\Omega^{\pm}}{=} \frac{aF^{+}}{\partial_{\lambda}H} \implies \quad f^{-} + \kappa_{\eta}^{-}\lambda \stackrel{\Omega^{+}}{=} \frac{a\left(f^{+} + \kappa_{\eta}^{+}H\right)}{\partial_{\lambda}H} \end{array}$

▶ First consequence: zeroes of η^{\pm} must be mapped to each other via **Φ**

- ► Out of the zeroes of η^{\pm} , this yields a 1st-order PDE for H (Cond. $\partial_{\lambda}H > 0$)
- ▶ We separately study (a) $\kappa_{\eta}^{\pm} = 0$, (b) $\kappa_{\eta}^{\pm} \neq 0$
- ▶ η^{\pm} degenerate: connected zero-sets (if any) are null subsets defined by $f^{\pm} = 0$
- ▶ η^{\pm} non-degenerate: one unique connected zero-set defined by $f^{\pm} + \kappa_{\eta}^{\pm} s^{\pm} = 0$

η^{\pm} degenerate

$$f^{-} \stackrel{\Omega^{+}}{=} \frac{af^{+}}{\partial_{\lambda}H} \implies H(\lambda, y^{A}) \stackrel{\Omega^{+}}{=} \beta(y^{A})\lambda + \mathcal{H}(y^{A}), \quad \beta(y^{A}) := \frac{af^{+}}{f^{-}} > 0$$

▶ Condition: same number of connected components of zero-sets on both sides

- Since Φ is continuous, the zero-sets of η^{\pm} cannot be arbitrarily identified
- ▶ Killing vectors to be identified must be either future or past

 η^{\pm} non-degenerate (Assumption: both Killing horizons are complete)

$$H(\lambda, y^{A}) \stackrel{\Omega^{+}}{=} = \frac{1}{a\kappa_{\eta}^{+}} \left(\alpha(y^{A}) \left(f^{-}(y^{A}) + \kappa_{\eta}^{-} \lambda \right)^{\hat{\kappa}} - af^{+}(y^{A}) \right), \quad \hat{\kappa} := \frac{a\kappa_{\eta}^{+}}{\kappa_{\eta}^{-}} \neq 0,$$

▶ The bifurcation surfaces must be mapped to each other

▶ $\alpha(y^A) \neq 0$ arbitrary, sign $(\alpha(y^A))$ must be the same for all null generators

▶ Full matching requires $\hat{\kappa} = 1$, i.e. surface gravities of η^- , $a\eta^+$ must coincide

Energy-momentum tensor: $\tau^{11} = \rho$, $\tau^{1I} = j^I$, $\tau^{IJ} = \gamma^{IJ}p$ [e.g. Poisson, 2004] The identification of Killings always results in shells with vanishing pressure p

Explicit examples: plane-fronted impulsive wave

- ▶ Regions $\{\mathcal{U}_+ > 0\}, \{\mathcal{U}_- < 0\}$ of Minkowski spacetime
- ► Metrics: $ds_{\pm}^2 = -2d\mathcal{V}_{\pm}d\mathcal{U}_{\pm} + \delta_{AB}dx_{\pm}^A dx_{\pm}^B$, Foliation defining functions: $s^{\pm} = \mathcal{V}_{\pm}$
- ► General shell: $H(\lambda, y^A) = \alpha(y^A) \int \exp(-\int p(\lambda, y^A) d\lambda) d\lambda + \mathcal{H}(y^A), \ \alpha(y^A) > 0$

