

Null hypersurfaces and conformal vector fields

Spanish-Portuguese Relativity Meeting EREP2021 September 2021, Aveiro, Portugal.

Cyriaque Atindogbé

Department of Mathematics. University of Abomey-Calavi, Benin.

Benjamín Olea

Dpto. Matemática Aplicada. Universidad de Málaga.

Let (M, g) be a Lorentzian manifold. A hypersurface L is a null hypersurface if g restricted to $T_x L$ is degenerated for each $x \in L$.

Let (M, g) be a Lorentzian manifold. A hypersurface L is a null hypersurface if g restricted to $T_x L$ is degenerated for each $x \in L$.

- There is a unique null direction in $T_{x}L$.
- All other directions in $T_{x}L$ are spacelike and orthogonal to the null direction.

Let (M, g) be a Lorentzian manifold. A hypersurface L is a null hypersurface if g restricted to $T_x L$ is degenerated for each $x \in L$.

- There is a unique null direction in $T_{x}L$.
- All other directions in $T_{x}L$ are spacelike and orthogonal to the null direction.
- Since $(T_{x}L)^{\perp} \subset T_{x}L$, there is not a canonical decomposition

 $T_x M \neq T_x L \oplus (T_x L)^{\perp}$.

Let (M, g) be a Lorentzian manifold. A hypersurface L is a null hypersurface if g restricted to $T_{x}L$ is degenerated for each $x \in L$.

- There is a unique null direction in $T_{x}L$.
- All other directions in $T_x L$ are spacelike and orthogonal to the null direction.
- Since $(T_{x}L)^{\perp} \subset T_{x}L$, there is not a canonical decomposition

$$T_x M \neq T_x L \oplus (T_x L)^{\perp}$$
.

Definition (Rigging vector field)

A vector field $\zeta: L \to TM$ defined over L is a rigging for L if

$$\zeta_x \notin T_x L$$

for all $x \in L$.

A fixed rigging ζ for *L* induces:

• A rigged vector field $\xi \in \mathcal{X}(L)$. It is the unique such that:

•
$$g(\xi,\xi) = 0.$$
 • $g(\xi,\zeta) = 1.$

A fixed rigging ζ for *L* induces:

• A rigged vector field $\xi \in \mathcal{X}(L)$. It is the unique such that:

•
$$g(\xi,\xi) = 0.$$
 • $g(\xi,\zeta) = 1.$

• A screen distribution given by $S_x = T_x L \cap \zeta_x^{\perp}$. We have

 $T_x L = S_x \oplus span(\xi_x)$

A fixed rigging ζ for *L* induces:

• A rigged vector field $\xi \in \mathcal{X}(L)$. It is the unique such that:

•
$$g(\xi, \xi) = 0.$$
 • $g(\xi, \zeta) = 1.$

• A screen distribution given by $S_x = T_x L \cap \zeta_x^{\perp}$. We have

$$T_x L = S_x \oplus span(\xi_x)$$

- A null transverse vector field given by N = ζ − ½g(ζ, ζ)ξ, which holds
 - g(N, N) = 0.• $g(N, \zeta) = g(N, \xi) = 1.$ • $N_x \perp S_x.$ • $T_x M = T_x L \oplus span(N_x).$

Fundamental tensors

Given $U, V \in \mathfrak{X}(L)$ we define

$$B(U, V) = -g(\nabla_U \xi, V),$$

$$C(U, V) = -g(\nabla_U N, P(V)),$$

$$\tau(U) = g(\nabla_U \zeta, \xi),$$

where $P: TL \rightarrow S$ is the canonical projection.

Fundamental tensors

Given $U, V \in \mathfrak{X}(L)$ we define

$$B(U, V) = -g(\nabla_U \xi, V),$$

$$C(U, V) = -g(\nabla_U N, P(V)),$$

$$\tau(U) = g(\nabla_U \zeta, \xi),$$

where $P: TL \rightarrow S$ is the canonical projection.

Definition (Null mean curvature)

The null mean curvature at $x \in L$ is

$$H_x = \sum_{i=1}^{n-2} B(e_i, e_i),$$

where $\{e_1, \ldots, e_{n-2}\}$ is an orthonormal basis of \mathcal{S}_x .

Induced connections ∇^{L} and ∇^{*} Given $U, V \in \mathfrak{X}(L)$ and $X \in \Gamma(S)$ $\nabla_{U}V = \underbrace{\nabla_{U}^{L}V}_{\in TL} + B(U, V)N$ $\nabla_{U}N = \tau(U)N - \underbrace{A(U)}_{\in TL}$ $\nabla_{U}\xi = -\tau(U)\xi - \underbrace{A^{*}(U)}_{\in S}$ $\nabla_{U}^{L}X = \underbrace{\nabla_{U}^{*}X}_{\in S} + C(U, X)\xi$

Induced connections ∇^{L} and ∇^{*} Given $U, V \in \mathfrak{X}(L)$ and $X \in \Gamma(S)$ $\nabla_{U}V = \underbrace{\nabla_{U}^{L}V}_{\in \mathcal{T}L} + B(U, V)N \qquad \nabla_{U}N = \tau(U)N - \underbrace{A(U)}_{\in \mathcal{T}L}$ $\nabla_{U}\xi = -\tau(U)\xi - \underbrace{A^{*}(U)}_{\in S} \qquad \nabla_{U}^{L}X = \underbrace{\nabla_{U}^{*}X}_{\in S} + C(U, X)\xi$

• $B(U, V) = g(A^*(U), V).$ • C(U, V) = g(A(U), V).

Rigged metric

The metric \tilde{g} given by

$$\widetilde{g}(U,V) = g(U,V) + g(\zeta,U)g(\zeta,V)$$

for all $U, V \in \mathfrak{X}(L)$ is a Riemannian metric on L called rigged metric.

Rigged metric

The metric \tilde{g} given by

$$\widetilde{g}(U,V) = g(U,V) + g(\zeta,U)g(\zeta,V)$$

for all $U, V \in \mathfrak{X}(L)$ is a Riemannian metric on L called rigged metric.

Theorem

Let (M, g) be a geodesically null complete Lorentzian manifold with n > 3 such that

- There exists a timelike conformal vector field.
- It holds the null convergence condition, *Ric(u, u)* ≥ 0 for all null vector *u*.

Then any totally umbilic null hypersurface with never vanishing null mean curvature which is strongly inextensible is contained in a null cone.

A vector field $K \in \mathfrak{X}(M)$ is conformal if $L_K g = 2\rho g$. It is Killing if $\rho = 0$.

A vector field $K \in \mathfrak{X}(M)$ is conformal if $L_K g = 2\rho g$. It is Killing if $\rho = 0$.

If K is conformal, then

$$\nabla_U K = \rho U + \varphi(U)$$

for all $U \in \mathfrak{X}(M)$ and certain one-form φ .

A vector field $K \in \mathfrak{X}(M)$ is conformal if $L_K g = 2\rho g$. It is Killing if $\rho = 0$.

If K is conformal, then

$$\nabla_U K = \rho U + \varphi(U)$$

for all $U \in \mathfrak{X}(M)$ and certain one-form φ .

Definition

K is called closed and conformal if $\varphi = 0$. In this case K^{\perp} is integrable.

Examples

Let (M,g) = (I × F, εdt² + f(t)²g_F), with ε = ±1. The vector field K = f∂t is closed, conformal and g(K, K) = ε.

Examples

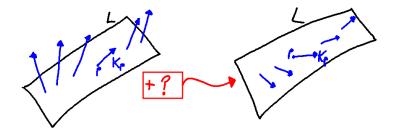
- Let (M,g) = (I × F, εdt² + f(t)²g_F), with ε = ±1. The vector field K = f∂t is closed, conformal and g(K, K) = ε.
- Let $(M,g) = \left(\mathbb{R}^2, E(v)du^2 + 2dudv\right)$ and

$$K = \partial u - E(v)\partial v.$$

We have $\nabla_U K = -\frac{E_v}{2}U$ for all $U \in \mathfrak{X}(M)$ and thus K is closed and conformal. Moreover g(K, K) = -E(v).

Given a conformal vector field K which is tangent to a null hypersurface L at some point $p \in L$,

under what conditions K is tangent to L at every point?



Let $K \in \mathfrak{X}(M)$ be a conformal vector field with constant conformal factor ρ . Suppose that *L* is a null hypersurface with zero null mean curvature

Let $K \in \mathfrak{X}(M)$ be a conformal vector field with constant conformal factor ρ . Suppose that L is a null hypersurface with zero null mean curvature and ζ is a rigging for L such that

- $d\tau = 0$.
- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $0 \leq trace(A^* \circ A)$.
- $K(span(\xi, N)) \leq Ric(\xi, N).$

Let $K \in \mathfrak{X}(M)$ be a conformal vector field with constant conformal factor ρ . Suppose that L is a null hypersurface with zero null mean curvature and ζ is a rigging for L such that

- $d\tau = 0$.
- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $0 \leq trace(A^* \circ A)$.
- $K(span(\xi, N)) \leq Ric(\xi, N).$

If $g(K,\xi)$ is signed and there is a point $p \in L$ with $K_p \in T_pL$, then $K_x \in T_xL$ for all $x \in L$.

Let $K \in \mathfrak{X}(M)$ be a conformal vector field with constant conformal factor ρ . Suppose that L is a null hypersurface with zero null mean curvature and ζ is a rigging for L such that

- $d\tau = 0$.
- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $0 \leq trace(A^* \circ A)$.
- $K(span(\xi, N)) \leq Ric(\xi, N).$

If $g(K,\xi)$ is signed and there is a point $p \in L$ with $K_p \in T_pL$, then $K_x \in T_xL$ for all $x \in L$.

Sketch of the proof.

Compute $\widetilde{\bigtriangleup}g(K,\xi)$ and apply the maximum principle.

Corollary

Let $K \in \mathfrak{X}(M)$ be a Killing vector field. Suppose that L is a null hypersurface with zero null mean curvature and ζ is a rigging for L such that

- $d\tau = 0$.
- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $0 \leq trace(A^* \circ A)$.
- $K(span(\xi, N)) \leq Ric(N, \xi)$.

Corollary

Let $K \in \mathfrak{X}(M)$ be a Killing vector field. Suppose that L is a null hypersurface with zero null mean curvature and ζ is a rigging for L such that

- $d\tau = 0$.
- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $0 \leq trace(A^* \circ A)$.
- $K(span(\xi, N)) \leq Ric(N, \xi).$

If K_x is causal for all $x \in L$ and there is a point $p \in L$ with $K_p \in T_pL$, then L is totally geodesic and $K_x = \nu(x)\xi_x$ for all $x \in L$ and certain $\nu \in C^{\infty}(L)$.

Example

Consider the Kruskal space $Q \times_r \mathbb{S}^2$ and

$$L = \{(0, v, x) : v > 0, x \in \mathbb{S}^2\}$$

which is a totally geodesic null hypersurface.

Example

Consider the Kruskal space $Q \times_r \mathbb{S}^2$ and

$$L = \{(0, v, x) : v > 0, x \in \mathbb{S}^2\}$$

which is a totally geodesic null hypersurface. For the rigging $\zeta = \partial u$ we have

•
$$\tau = 0.$$
 • $C = -vg.$ • $N = \partial u.$ • $\xi \parallel \partial v.$

•
$$Ric(\xi, N) = K(span(\xi, N)) = 0.$$

Example

Consider the Kruskal space $Q \times_r \mathbb{S}^2$ and

$$L = \{(0, v, x) : v > 0, x \in \mathbb{S}^2\}$$

which is a totally geodesic null hypersurface. For the rigging $\zeta=\partial u$ we have

•
$$\tau = 0.$$
 • $C = -vg.$ • $N = \partial u.$ • $\xi \parallel \partial v.$

•
$$Ric(\xi, N) = K(span(\xi, N)) = 0.$$

 $K = v \partial v - u \partial u$ is Killing and causal in L.

Let $K \in \mathfrak{X}(M)$ be a timelike conformal vector field with constant conformal factor ρ . Suppose that *L* is a totally geodesic null hypersurface and ζ is a rigging for *L* such that

1
$$\tau = 0.$$

- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $(span(\xi_x, N_x)) \neq Ric(N_x, \xi_x) \text{ for all } x \in L.$

Then *L* can not be compact.

Let $K \in \mathfrak{X}(M)$ be a timelike conformal vector field with constant conformal factor ρ . Suppose that L is a totally geodesic null hypersurface and ζ is a rigging for L such that

1
$$\tau = 0.$$

- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $(span(\xi_x, N_x)) \neq Ric(N_x, \xi_x) \text{ for all } x \in L.$

Then L can not be compact.

Example

$$(M,g) = (\mathbb{S}^1 \times \ldots \times \mathbb{S}^1, dx_1 dx_2 + dx_3^2 + \ldots + dx_n^2)$$

 $K = \partial x_1 - \partial x_2$ is a timelike parallel vector field.

Let $K \in \mathfrak{X}(M)$ be a timelike conformal vector field with constant conformal factor ρ . Suppose that *L* is a totally geodesic null hypersurface and ζ is a rigging for *L* such that

1
$$\tau = 0.$$

2
$$C(\xi, X) = 0$$
 for all $X \in \Gamma(S)$.

 $S K(span(\xi_x, N_x)) \neq Ric(N_x, \xi_x) \text{ for all } x \in L.$

Then L can not be compact.

Example

 $(M,g) = (\mathbb{S}^1 \times \ldots \times \mathbb{S}^1, dx_1 dx_2 + dx_3^2 + \ldots + dx_n^2)$ $K = \partial x_1 - \partial x_2$ is a timelike parallel vector field. $L = \{x \in \mathbb{T}^n : x_2 = p\}$ for a fixed $p \in \mathbb{S}^1$ is compact and totally geodesic. For $\zeta = \partial x_2$ we have

•
$$\tau = 0.$$
 • $C = 0.$

Lemma

Let $K \in \mathfrak{X}(M)$ be closed and conformal vector field and fix $p \in M$.

- If K_p is timelike/spacelike then \mathcal{F}_p is a spacelike/timelike totally umbilical hypersurface.
- If K_p is null, then \mathcal{F}_p is a totally umbilical null hypersurface and $Rad(T_xL) = span(K_x)$ for all $x \in \mathcal{F}_p$.

Lemma

Let $K \in \mathfrak{X}(M)$ be closed and conformal vector field and fix $p \in M$.

- If K_p is timelike/spacelike then F_p is a spacelike/timelike totally umbilical hypersurface.
- If K_p is null, then \mathcal{F}_p is a totally umbilical null hypersurface and $Rad(T_xL) = span(K_x)$ for all $x \in \mathcal{F}_p$.

Lemma

Let $K \in \mathfrak{X}(M)$ be a causal closed and conformal vector field. If K_p is null for some $p \in M$, then \mathcal{F}_p is a totally geodesic null hypersurface.

Under what conditions a null hypersurface is an orthogonal leaf of a closed and conformal vector field?

Under what conditions a null hypersurface is an orthogonal leaf of a closed and conformal vector field?

Theorem

Let $K \in \mathfrak{X}(M)$ be a causal, closed and conformal vector field. Suppose that *L* is a null hypersurface with zero null mean curvature and ζ is a rigging for *L* such that

- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $0 \leq trace(A^* \circ A).$
- $K(span(\xi, N)) \leq Ric(N, \xi).$

Under what conditions a null hypersurface is an orthogonal leaf of a closed and conformal vector field?

Theorem

Let $K \in \mathfrak{X}(M)$ be a causal, closed and conformal vector field. Suppose that *L* is a null hypersurface with zero null mean curvature and ζ is a rigging for *L* such that

$$2 C(\xi, X) = 0 for all X \in \Gamma(\mathcal{S}).$$

- $0 \leq trace(A^* \circ A).$
- $K(span(\xi, N)) \leq Ric(N, \xi).$

If $g(\xi, K)Ric(\xi, K) \leq 0$ and there is a point $p \in L$ with $K_p \in T_pL$, then $K_x = \nu(x)\xi_x$ for all $x \in L$ and L is a totally geodesic orthogonal leaf of K.

Let $K \in \mathfrak{X}(M)$ be a null parallel vector field and L a null hypersurface with rigging ζ such that

- H is constant.
- *τ* = 0.
- $C(\xi, X) = 0$ for all $X \in \Gamma(S)$.
- $0 \leq trace(A^* \circ A)$.
- $K(span(\xi, N)) \leq Ric(\xi, N).$

If there is $p \in L$ such that $K_p \in T_pL$, then $K_x = \nu \xi_x$ for all $x \in L$ and a nonzero constant $\nu \in \mathbb{R}$ and L is a totally geodesic orthogonal leaf of K.

Let $K \in \mathfrak{X}(M)$ be a closed and conformal vector field and L a null hypersurface with zero null mean curvature such that $K_x \in T_x L$ for all $x \in L$. Suppose that ζ is a rigging for L such that.

•
$$d\tau = 0$$
.

•
$$C(\xi, X) = 0$$
 for all $X \in \Gamma(S)$.

If $(n-1)(n-2)\rho^2 \leq Ric(K, K)$ and K_p is null for some point $p \in L$, then $K_x = \nu(x)\xi_x$ for all $x \in L$ and L is a totally geodesic orthogonal leaf of K.

A null hypersurface has a screen non-degenerate second fundamental form if $B(v, v) \neq 0$ for all $v \in S$ with $v \neq 0$.

This property does not depend on the chosen rigging.

A null hypersurface has a screen non-degenerate second fundamental form if $B(v, v) \neq 0$ for all $v \in S$ with $v \neq 0$.

This property does not depend on the chosen rigging.

Theorem

Let $K \in \mathfrak{X}(M)$ be a closed and conformal vector field and L a null hypersurface such that $K_x \in T_x L$ for all $x \in L$. If L has a screen non-degenerate second fundamental form, then $K_x = \nu(x)\xi_x$ for all $x \in L$ and L is an orthogonal leaf of K.

A null hypersurface has a screen non-degenerate second fundamental form if $B(v, v) \neq 0$ for all $v \in S$ with $v \neq 0$.

This property does not depend on the chosen rigging.

Theorem

Let $K \in \mathfrak{X}(M)$ be a closed and conformal vector field and L a null hypersurface such that $K_x \in T_x L$ for all $x \in L$. If L has a screen non-degenerate second fundamental form, then $K_x = \nu(x)\xi_x$ for all $x \in L$ and L is an orthogonal leaf of K.

Corollary

Let $K \in \mathfrak{X}(M)$ be a closed and conformal vector field and L a null hypersurface such that $K_x \in T_x L$ for all $x \in L$. If L is totally umbilic with never vanishing null mean curvature, then $K_x = \nu(x)\xi_x$ for all $x \in L$ and L is an orthogonal leaf of K.

