On the nature of spacetime singularities

István Rácz racz.istvan@wigner.hu

Wigner Research Center for Physics

Spanish-Portuguese Relativity Meeting EREP2021

September 13-16, 2021

The singularity theorem by Roger Penrose (1965)

- during the first five decades of Einstein's theory of gravity, singular behavior popped up in many of the physically relevant solutions
- singularity theorems of Penrose and Hawking
 - they predict, under a wide range of physically plausible conditions, the existence of **spacetime singularities**, more precisely, they prove that
 - generic spacetimes describing the gravitational collapse of stars (1965) or the expanding universe (1966) are **causal geodesically incomplete**

• **singularity** \iff **incompleteness**: they are used as synonyms

- in the case of the well-known solutions, the incomplete causal geodesics do indeed terminate on "curvature singularities" (e.g., $R_{abcd}R^{abcd}$...)
- BUT, do we know for sure that the anticipated curvature blow up or any other violent behavior will always occur?
- NO, NOT REALLY !!! NOT YET !!!
- $\bullet \ \exists$ inconsistency in the use of notions: incompleteness and singularities
- outline an argument: a step towards the reduction of this discrepancy

Spacetime as a Cauchy development?

Penrose's strong cosmic censorship conjecture

- (M, g_{ab}) : M is a smooth paracompact, connected, orientable manifold endowed with a C^{∞} metric g_{ab} of Lorentzian signature and time orientation
 - C^∞ only for mathematical conveniences...
 - what is the most suitable differentiability class to be used? (return later)
- tacitly a spacetime is always assumed to represent all the events compatible with the history of the investigated physical system
- a celebrated result by Choquet-Bruhat and Geroch (1969) guarantees (assuming smoothness) the existence of a maximal Cauchy development
- \bullet the situation is more complex: \exists causal geodesically incomplete spacetimes:
 - they contain as a part "the maximal" Cauchy development, and

• they can be continued beyond the Cauchy horizon: no curvature blowup occurs (think of max. anal. extensions of Kerr, Taub-NUT spacetimes where the ability to predict the future of data given on an inextendible initial data surface, breaks down)

• **Penrose's strong cosmic censorship conjecture:** the maximal Cauchy development of a **generic** compact or asymptotically flat initial data is never part of a larger spacetime. (if true, *A* Cauchy Horizon, no extension beyond)

How could we show that something violent is to happen?

• What do we have by hand?

- singularity theorems by Penrose and Hawking
- the existence of maximal Cauchy development Choquet-Bruhat and Geroch
- strong cosmic censorship conjecture by Penrose

• What about the following argument by contradiction?

- consider a causal geodesically incomplete spacetime that is the maximal Cauchy development of a **generic** compact or asymptotically flat initial data, i.e. **it is inextendible**
- assume that nothing violent happens while approaching the "ideal endpoint" of any of the incomplete causal geodesics
- **show** that the considered maximal Cauchy development **can be extended**; *leading to the contradiction:* **it is not maximal, it is extendible**
- in turn, we get then that causal geodesic incompleteness of the maximal Cauchy development must be accompanied by a singular behaviour
- !!! ...to show that the original spacetime is part of a larger one... we also need some results on *spacetime extensions*: CJC Clarke mid 70'; IR 1993, 2010

How do we extend a spacetime? manifold & metric

- Definition: Consider (M, g_{ab}) and (M̂, ĝ_{ab}) the differential structure of which are at least of class C^X (C[∞]?), respectively. (X not specified yet!) A map Φ : (M, g_{ab}) → (M̂, ĝ_{ab}) is said to be a C^X-isometric embedding if Φ is a C^X-diffeomorphism between M and Φ[M] ⊂ M̂ such that it carries the metric g_{ab} into ĝ_{ab}|_{Φ[M]}, i.e. Φ^{*}g_{ab} = ĝ_{ab}|_{Φ[M]}.
- Definition: $(\widehat{M}, \widehat{g}_{ab})$ is called to be a $\mathbf{C}^{\mathbf{X}}$ -extension of (M, g_{ab}) if Φ is an isometric embedding such that $\Phi[M]$ is a proper subset of \widehat{M}

What is the most suitable differentiability class?

- ${\, \bullet \,}$ smooth or even C^2 may be too much to be required
- general relativity is a physical theory: the wider the class of metrics allowed the wider will be the class of physical processes that can be investigated; ??? field equations ???
- Geroch and Traschen: (1987) the widest possible class of metrics such that the Riemann, Einstein and Weyl tensors are well-defined as distributions
 - the space of regular metrics:
 - g_{ab} locally bounded
 - with locally bounded inverse g^{ab}
 - \bullet the weak first derivatives " $\partial_c g_{ab}$ " are locally square-integrable
 - C⁰ regular metrics:
 - if a regular metric g_{ab} is also **continuous** it can be approximated by sequences of smooth metrics $\{^{(i)}g_{ab}\}$ such that the corresponding curvature tensors $\{^{(i)}R_{abc}{}^d\}$ do converge in L_2 -norm to the curvature distribution $R_{abc}{}^d$ of the continuous regular metric g_{ab}

The C^0 G-T regular metrics are still too rough

- Some of the basic concepts should be well-defined: the class of locally Lipschitz, $C_{loc}^{0,1} (= C_{loc}^{1-})$, metrics is distinguished
- C^{0,1}_{loc} differentiability suffices for many key results of the C[∞] causality theory
 global hyperbolicity makes sense
 Chrusciel-Grant (2012), Sämann (2016)
- **global** existence and uniqueness to linear field equations with sources and with g_{ab} of $C_{loc}^{0,1}$ (Chrusciel-Grant (2012), Sanches-Vickers 2017)
 - ∃ maximal Cauchy development for the vacuum Einstein equations requires metric with critical Sobolev exponent s = 2 (Klainerman-Rodnianski 2001)
- $C_{loc}^{0,1}$ is the weakest condition under which "pointwise" differential geometry is possible (CJS Clark 1982)
 - $C_{loc}^{0,1}$ -geodesic as uniform accumulation of sequences of smooth ${}^{(i)}g_{ab}$ -geodesics
 - weak solutions to Jacobi's equation make sense (a.e.) along timelike geodesics
- physically interesting solutions with $C_{loc}^{0,1}$ regular metrics:
 - gravitational shock waves
 - thin mass shells
 - solutions with pressure free matter with geodesic flow lines having two- or three-dimensional caustics

What type of result are we looking for?

- **Theorem:** Consider a timelike geodesically incomplete spacetime (M, g_{ab}) that is the maximal globally hyperbolic development of a generic compact or asymptotically flat initial data and that is inextendible as a Lorentzian manifold within the class of $C_{loc}^{0,1}$ metrics. Then, there exists an incomplete timelike geodesic that terminates on a **parallelly propagated curvature singularity**.
- in what follows the metric will be assumed to be smooth, with the understanding that $C^{0,1}_{loc}$ metrics can be approximated by sequences of C^{∞} metrics
- the papers below provide some hints on results relevant for the smooth setup
 - Rácz, I. (1993): *Spacetime extensions I.*, Journal of Mathematical Physics **34**, 2448-2464
 - Rácz, I. (2010): Space-time extensions II, Classical and Quantum Gravity 27, 155007, Selected by the Editorial Board of Classical and Quantum Gravity as part of the journal's Highlights of 2010, in 2011.

1st step:

- assume that (M, g_{ab}) is a timelike geodesically incomplete, inextendible spacetime and that the **tidal force tensor components are bounded**
- let $\gamma: (t_1, t_*) \to M$ be one of the future incomplete timelike geodesics
 - $\bullet\,$ choose ${\cal U}$ be a neighbourhood of a final segment of $\gamma\,$
 - the aim is to find $\hat{\mathcal{U}}$ and $\phi : \mathcal{U} \to \hat{\mathcal{U}}$ such that $\hat{\mathcal{U}}$ is comprised by the union of $\phi[\mathcal{U}]$ and "a neighbourhood of the endpoint of $\phi \circ \gamma$ " (not yet constructed !!!)

2nd step:

(M̂, ĝ_{ab}): defined by gluing (M, g_{ab}) and (Ũ, g̃_{ab}) at their "common parts"
M̂ is the quotient space M̂ = (M ∪ Ũ)/φ, where x ∈ M is equivalent to y ∈ Ũ if φ(x) = y; M̂ is Hausdorff with respect to the quotient topology
the metric ĝ_{ab} on M̂ is determined by g_{ab} and g̃_{ab}

The construction of \mathcal{U}

- to apply Whitney's extension results: cover ${\mathcal U}$ by a single coordinate patch
 - let $\gamma : (t_1, t_*) \to M$ be an incomplete timelike geodesic & $p = \gamma(t_0)$: t is the proper time parameter along γ , with tangent $v^a = (\partial/\partial t)^a$; (t is an affine par.)
 - choose Σ to be the hypersurface generated by spacelike geodesics starting at $p=\gamma(t_0)$ with tangent orthogonal to v^a

- choose an orthonormal frame $\{e^a_{(\mathfrak{a})}\}$, $e^a_{(4)} = v^a$ at p and extend it onto Σ
- consider the 3-par. family of timelike geodesics starting at Σ with $v^a = e^a_{(A)} \dots$
- denote by Γ the "synchronized" 3-par. family of timelike geodesics
- choose \mathcal{U} to be ruled by members of Γ : extend $\{e^a_{(\mathfrak{a})}\}$ onto \mathcal{U} by par.prop...

Can Σ be chosen such that \mathcal{U} covers the final segments?

• whenever the tidal force components

$$R_{abcd} e^a_{(\mathfrak{a})} v^b e^c_{(\mathfrak{b})} v^d \qquad \qquad (\text{where } v^a = e^a_{(4)})$$

of the Riemann tensor are bounded in synchronized, parallelly propagated orthonormal frames $\{e^a_{(\mathfrak{a})}\}$, along the synchronized 3-parameter congruence Γ (we tacitly assumed that no topological obstruction [alg. special cases] occur)

 Σ can be chosen such that U is ruled by final segments of members of the timelike geodesic congruence Γ, and such that no conjugate point to Σ occurs

 \bullet then Gaussian coordinates $(x^1,x^2,x^3,x^4=t)$ can be defined on ${\mathcal U}$

How to extend the metric from $\phi[\mathcal{U}] \subset \mathbb{R}^4$?

• How does one extend a function?

- Consider a real-valued C^m -function \mathcal{F} defined on a bounded subset \mathscr{A} of \mathbb{R}^n .
- How can we tell whether there exists $\widetilde{\mathcal{F}} \in C^m(\mathbb{R}^n)$ such that $\widetilde{\mathcal{F}} = \mathcal{F}$ on \mathscr{A} ? [studied by Hassler Whitney ~1930 (see also C Fefferman (2005))]
- **Definition:** a point set $\mathscr{A} \subset \mathbb{R}^n$ is said to possess **the property** \mathscr{P} if there is a positive real number ω such that for any two points x and y of \mathscr{A} can be joined by a curve in \mathscr{A} of length $L \leq \omega \cdot \rho(x, y)$, where $\rho(x, y)$ denotes the Euclidean distance of the points $x, y \in \mathbb{R}^n$.
- **Theorem:** [adopting Whitney's results (1934)] Assume that $\mathscr{A} \subset \mathbb{R}^n$ is bounded and it possesses property \mathscr{P} , and let $\mathcal{F}(x^1, ..., x^n)$ be of class $C_{loc}^{0,1}$ in \mathscr{A} . Suppose that $\mathcal{F}(x^1, ..., x^n)$ can be defined on the boundary $\partial \mathscr{A}$ of \mathscr{A} such that it is of class $C_{loc}^{0,1}$ on $\overline{\mathscr{A}} = \mathscr{A} \cup \partial \mathscr{A}$. Then there exists an extension $\widetilde{\mathcal{F}}$ of \mathcal{F} onto \mathbb{R}^n such that $\widetilde{\mathcal{F}}$ is (at least) of class $C_{loc}^{0,1}$.
- as the spacetime is a maximal globally hyperbolic development $\Rightarrow \phi[\mathcal{U}] \subset \mathbb{R}^4$ possesses property \mathscr{P}

We still need to extend the metric from $\phi[\mathcal{U}]$!!!

 \bullet in the Gaussian coordinates $(x^1,x^2,x^3,x^4=t)$ on $\mathcal{U}:$ the metric reads as

$$ds^2 = -dt^2 + g_{ij} \, dx^i dx^j$$

• Whitney's theorem \Rightarrow the extendibility of functions defined on bounded subsets of $\mathbb{R}^4 \Rightarrow$ the components of the metric g_{ab} can be extended such that its extension $\tilde{g}_{\alpha\beta}$ is of class $C^{0,1}_{loc}$ if components g_{ij} can be shown to be locally Lipschitz functions on the closure $\overline{\phi[\mathcal{U}]}$ of $\phi[\mathcal{U}]$, which holds

•
$$\Rightarrow$$
 if the "t-derivatives" of $g_{ij} = g_{ab} E^a_{(i)} E^b_{(j)}$, where $E^a_{(i)} := (\partial/\partial x^i)^a$,

$$\partial_t g_{ij} = v^e \nabla_e [g_{ab} \, E^a_{(i)} E^b_{(j)}] = g_{ab} \left[\left(v^e \nabla_e E^a_{(i)} \right) E^b_{(j)} + E^a_{(i)} \left(v^e \nabla_e E^b_{(j)} \right) \right]$$
 are uniformly bounded along the members of Γ

- it suffices to show that the norms $||E^a_{(\alpha)}||$ and $||v^e \nabla_e E^a_{(\alpha)}||$ of the coordinate basis fields $E^a_{(i)}$, and also that of $v^e \nabla_e E^a_{(i)}$ are uniformly bounded on $\phi[\mathcal{U}]$
 - where the norm $||X^a||$ of a vector field X^a , with respect to a synchronized orthonormal basis field $\{e^a_{(a)}\}$ and a Lorentzian metric g_{ab} , is defined as

$$\|X^a\| = \sqrt{\sum_{b=1}^4 \left[g_{ab}X^a e^b_{(b)}\right]^2}$$

• notably, the boundedness can be guaranteed using the Jacobi equation

$$v^e \nabla_e \left(v^f \nabla_f E^a_{(\alpha)} \right) = R_{efg}{}^a v^e E^f_{(\alpha)} v^g$$

and applying our (indirect) assumption guaranteeing the boundedness of the tidal force components of the Riemann tensor, along the members of Γ

- combining all the above partial results \Rightarrow **Theorem:** Consider a timelike geodesically incomplete spacetime (M, g_{ab}) that is the maximal globally hyperbolic development of a generic compact or asymptotically flat initial data and that is inextendible within the class of $C_{loc}^{0,1}$ spacetimes. Then, there exists an incomplete timelike geodesic that terminates on a **parallelly propagated curvature singularity**.
- \Rightarrow at least one of the tidal force tensor components of the Riemann tensor blows up

Thanks for your attention