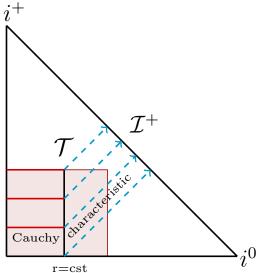
Hyperbolicity of GR in null foliations

Thanasis Giannakopoulos

Instituto Superior Técnico, Lisbon

Spanish-Portuguese Relativity Meeting, Aveiro, September 16, 2021

Highly accurate gravitational waveform modelling



Cauchy-Characteristic extraction

Hyperbolicity

$$\mathcal{A}^{t}(\mathbf{u}, x^{\mu}) \partial_{t}\mathbf{u} + \mathcal{A}^{p}(\mathbf{u}, x^{\mu}) \partial_{p}\mathbf{u} + \mathcal{S}(\mathbf{u}, x^{\mu}) = 0,$$

where $\mathbf{u} = (u_1, u_2, \dots, u_q)^T$, is the state vector of the system and

$$\mathcal{A}^{\mu} = egin{pmatrix} a_{11}^{\mu} & \dots & a_{1q}^{\mu} \ dots & \ddots & dots \ a_{q1}^{\mu} & \dots & a_{qq}^{\mu} \end{pmatrix}$$

denotes the principal part matrices, with $\det(\mathcal{A}^t)
eq 0$. Construct the

$$\mathbf{P}^{s}=\left(\mathcal{A}^{t}
ight)^{-1}\mathcal{A}^{p}\,s_{p}\,,$$

where s^i is an arbitrary unit spatial vector.

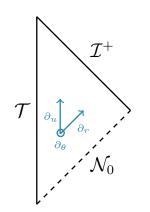
Well-posedness

The PDE problem has a unique solution that depends continuously on the given data in a suitable norm.

- Strongly hyperbolic (SH) \rightarrow well-posed IVP in the L^2 norm
- Weakly hyperbolic (WH) \rightarrow **ill-posed** IVP in the L^2 norm

A numerical solution **can converge** to the continuum **only** for well-posed PDE problems.

Bondi-like gauges



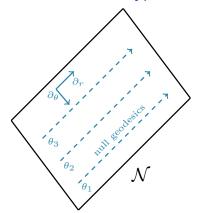
- vector basis: ∂_{u} , ∂_{r} , ∂_{θ} , ∂_{ϕ}
- ullet ∂_r is null $\& \perp$ to $\partial_ heta$ and ∂_ϕ

$$g^{\mu
u}=egin{pmatrix} 0&g^{ur}&0&0\ g^{ur}&g^{rr}&g^{r heta}&g^{r\phi}\ 0&g^{r heta}&g^{ heta}&g^{ heta\phi}\ 0&g^{r\phi}&g^{ heta\phi}&g^{\phi\phi} \end{pmatrix}$$

Vacuum Einstein's equations:

Evolution system:
$$R_{rr}=R_{r\theta}=R_{r\phi}=R_{\theta\theta}=R_{\theta\phi}=R_{\phi\phi}=0$$

Weak hyperbolicity of Bondi-like gauges



The principal symbol 1,2 :

$$\mathbf{P}^s = \begin{pmatrix} \mathbf{P}_G & \mathbf{P}_{GC} & \mathbf{P}_{GP} \\ 0 & \mathbf{P}_C & 0 \\ 0 & 0 & \mathbf{P}_P \end{pmatrix}$$

New result²: \mathbf{P}_G is non-diagonalizable along θ if ∂_r is \bot to ∂_{θ} .

GR in Bondi-like gauges \rightarrow WH 2nd order PDE system³

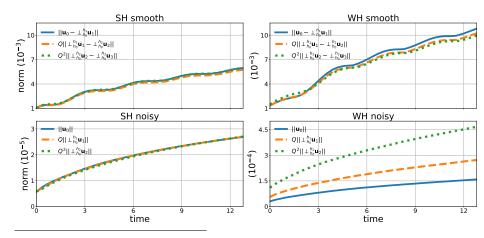
¹Hilditch & Richter 2016

²WIP with Bishop, Hilditch, Pollney & Zilhão

³see Ripley 2021 for a symmetric hyperbolic formulation with higher derivatives

Convergence tests in the L^2 norm

- Monitor the numerical error with increasing resolution
- Convergence factor: Q = 4 for these tests by construction

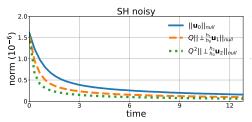


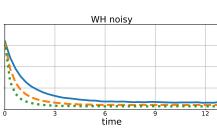
The importance of the norm

Discrete norm¹:

$$||\textbf{u}^2|| = ||\textbf{u}_{\mathrm{in}}^2||_{\mathcal{N}_u}^{1/2} + \mathrm{max}_x||\textbf{u}_{\mathrm{out}}^2||_{\mathcal{T}_x}^{1/2}\,,$$

where $||...||^{1/2}$ denotes a sum.





WIP with Bishop, Hilditch Pollney & Zilhão

¹ Inspired by the toy models of PhysRevD.102.064035

Summary

- ullet GR in Bondi-like gauges o weakly hyperbolic 2nd order PDE system
- III-posed characteristic initial boundary value problem in the L^2 norm (other norms?)
- ullet Weak hyperbolicity in numerics o high frequency given data

TODO:

 \bullet Characteristic GR formulations \to strongly hyperbolic 2nd order PDE system

Summary

- ullet GR in Bondi-like gauges o weakly hyperbolic 2nd order PDE system
- Ill-posed characteristic initial boundary value problem in the L^2 norm (other norms?)
- ullet Weak hyperbolicity in numerics o high frequency given data

TODO:

 \bullet Characteristic GR formulations \to strongly hyperbolic 2nd order PDE system

Thank you!