Hyperboloidal massless scalar field in 3D

Alex Vano-Vinuales

CENTRA, Instituto Superior Técnico

Spanish-Portuguese Relativity Meeting (EREP), online (Aveiro) -

16th September 2021

Slicing spacetime to reach future lightlike infinity

 i^0

t = const

Standard slicing options for the initial value formulation of the Einstein equations, to solve them as an evolution in time:

• Standard Cauchy slices

T

Slicing spacetime to reach future lightlike infinity

 \mathcal{T}^+ i^0 J light ray

Standard slicing options for the initial value formulation of the Einstein equations, to solve them as an evolution in time:

- Standard Cauchy slices
- Null slices

Slicing spacetime to reach future lightlike infinity

;0 matched

Standard slicing options for the initial value formulation of the Einstein equations, to solve them as an evolution in time:

- Standard Cauchy slices
- Null slices
- Cauchy-Characteristic matching / extraction

Slicing spacetime to reach future lightlike infinity

 \mathcal{T}^+ i^0 hyperboloidal Standard slicing options for the initial value formulation of the Einstein equations, to solve them as an evolution in time:

- Standard Cauchy slices
- Null slices
- Cauchy-Characteristic matching / extraction
- Hyperboloidal slices

i +

Slicing spacetime to reach future lightlike infinity

 \mathcal{T}^+ i^0 hyperboloidal

 i^+

Standard slicing options for the initial value formulation of the Einstein equations, to solve them as an evolution in time:

- Standard Cauchy slices
- Null slices
- Cauchy-Characteristic matching / extraction
- Hyperboloidal slices

Advantages of the hyperboloidal approach:

- Extraction at \mathscr{I}^+ , no approximations.
- Slices spacelike & smooth everywhere.
- More resolution for the central part.

Slicing spacetime to reach future lightlike infinity i^+

 \mathcal{T}^+ i^0 hyperboloidal Future null infinity (\mathscr{I}^+) is a region of spacetime of interest

- for the study of global properties of spacetimes and
- for the extraction of gravitational waves (only well described at \mathscr{I}^+ , where observers are located).

A possible approach: Penrose's conformal compactification of spacetime. The physical metric $\tilde{g}_{\mu\nu}$ is rescaled

$$g_{\mu\nu} \equiv \Omega^2 \tilde{g}_{\mu\nu}, \qquad (1)$$

with $\Omega|_{\mathscr{I}^+} = 0$ to keep $g_{\mu\nu}$ finite there.

Equations for the conformal metric

The Einstein equations including cosmological constant are

 $G[\tilde{g}]_{ab} + \tilde{g}_{ab}\Lambda = 8\pi T[\tilde{g}]_{ab}.$

Expressing them in terms of the rescaled metric $g_{ab} = \Omega^2 \tilde{g}_{ab}$ gives

$$G[g]_{ab} + \frac{2}{\Omega} (\nabla_a \nabla_b \Omega - g_{ab} \Box \Omega) + \frac{3}{\Omega^2} g_{ab} (\nabla_c \Omega) (\nabla^c \Omega) + \frac{1}{\Omega^2} g_{ab} \Lambda = 8\pi T [\frac{g}{\Omega^2}]_{ab}.$$

Extra formally divergent terms at \mathscr{I} appear in the equations.

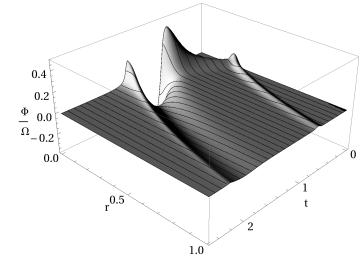
Evaluating the previous expression multiplied by Ω^2 at \mathscr{I} yields

$$(\nabla_c \Omega)(\nabla^c \Omega)|_{\mathscr{I}} = -\Lambda, \quad \text{so that}$$

- $\Lambda = 0$: \mathscr{I} is null,
- $\Lambda > 0$: \mathscr{I} is spacelike,
- $\Lambda < 0$: \mathscr{I} is timelike.

Hyperboloidal initial value problem	Results in spherical symmetry	
	0000	
Perturbed regular spacetime		

Scalar field

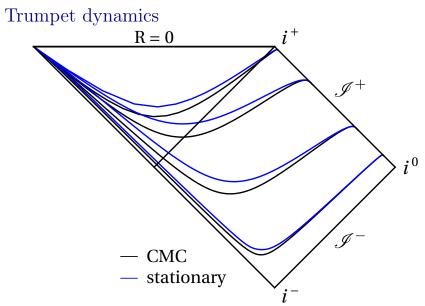


Vañó-Viñuales, Husa and Hilditch. Class. Quant. Grav. 32.17 (2015).

Hyperboloidal initial value problem Results in spherical symmetry Toy model for 3D implementation Conclusions 000 000 000 0 0000 0

Collapse of the scalar field

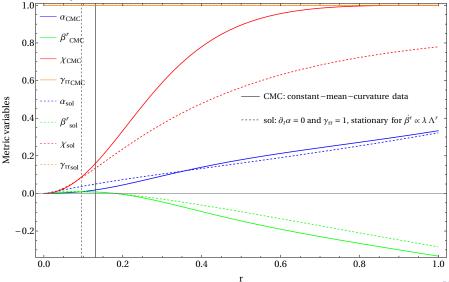
Evolution: $\boldsymbol{\chi}, \tilde{\boldsymbol{K}}, \alpha, \beta^r, \Phi/\Omega$



6/12

	Results in spherical symmetry	
	0000	
Trumpet geometry relevation		

Stationary initial data



Wave equation as toy model

Einstein equations are complicated and non-linear, start with simpler models:

This approach

• Non-conformally invariant:

$$\begin{split} \tilde{\Box}\tilde{\Phi} &= 0 \qquad \rightarrow \\ \Box\Phi &+ \Phi\left(\frac{\Box\Omega}{\Omega^2} - \frac{2\nabla_a\Omega\nabla^a\Omega}{\Omega}\right) = 0 \end{split}$$

- 2nd order in space
- no matching on slice
- only Minkowski background, Schwarzschild trumpet planned
- by default use spherical coords

$LlamaWaveHyperboloidal^*$

• Conformally invariant $(\tilde{\Phi} = \Omega \Phi)$:

$$\begin{split} (\tilde{\Box} - \tilde{R}/6)\tilde{\Phi} &= 0 \quad \rightarrow \\ \left(\Box - \frac{R}{6} \right) \Phi &= 0 \end{split}$$

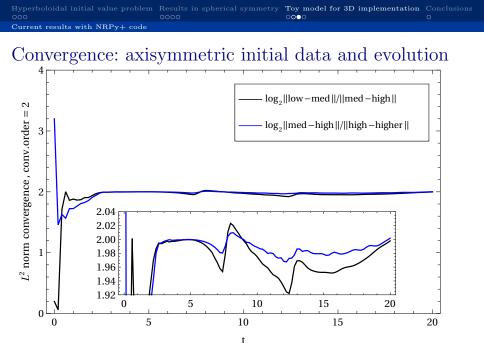
- 1st order, flux-conservative
- matching: inner Cauchy slice and outer hyperboloidal one
- up to Kerr background
- Cartesian coords matched

*Thorn for the Einstein Toolkit code: Jasiulek. Class. Quant. Grav. 29 (2012).

Hyperboloidal initial value problem Results in spherical symmetry Toy model for 3D implementation Conclusions 000 0000 0000 0Current results with NRPy+ code

Massless scalar field equation

Evolution of the massless wave equation on a hyperboloidal slice of Minkowski spacetime using curvilinear coordinates in NRPy+1 r.



10/1:

Hyperboloidal initial value problem Results in spherical symmetry **Toy model for 3D implementation** Conclusions 000 0000 000● 0 Current and future plans

Implementation into the Einstein Toolkit

Implementation as Einstein Toolkit thorn:

- The Einstein Toolkit is an open-source modular code optimised for numerical relativity with a large community of users.
- Follow LlamaWaveHyperboloidal thorn: interior Cartesian coordinates matched to outer spherical shell.
- Wave equation suitable for spherical coordinates everywhere, but infrastructure better suited to Cartesian ones.

Future tests in 3D (NRPy+/Einstein Toolkit):

- Schwarzschild and Kerr trumpet backgrounds for the scalar field.
- Implement Good-Bad-Ugly (GBU) model (Gasperin et al. Class. Quant. Grav. 37.3 (2020)), semilinear model of the Einstein eqs.
- Linerised Einstein equations before non-linear implementation.

Summary

- Successful spherically symmetric results of the hyperboloidal initial value problem \rightarrow start long-awaited 3D implementation.
- Current 3D implementation of the massless wave equation on a regular hyperboloidal background used as toy model for GR.
- More numerical experiments (other hyperboloidal backgrounds and models) before attempting the full Einstein equations.

Thank you for your attention!

Questions?