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Introduction Black holes in three dimensions

The BTZ solution

� The three-dimensional version of theD-dimensional Schwarzschild and Kerr-(A)dS
solutions corresponds to the BTZ spacetime. [Bañados,Teitelboim,Zanelli]

� For Einstein gravity in three-dimensions

I =
1

16πG

∫
d3x
√
|g|
[
R+

2
L2

]
,

we have the solution [r ∈ [0,∞), t ∈ [0,∞), φ ∈ [0, 2π)]

ds2
BTZ = −f(r)dt2 +

dr2

f(r)
+ r2

[
dφ−

J

2r2 dt
]2

, f(r) ≡
r2

L2 −M +
J2

4r2

� This is locally equivalent to pure AdS3 (in particular, all curvature invariants are
constant) but different globally. In particular, at r = 0 there is a singularity in
the causal structure.

� It can describe up to two horizons or a naked (conical) singularity depending on
the values of J,M .

� It shares many of the properties of higher-D black holes, including thermodynam-
ics, holography, etc.
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Introduction Black holes in three dimensions

Beyond BTZ

Additional classes of D = 3 black holes have been obtained.

� Higher-curvature modifications of Einstein gravity. Solutions locally inequivalent
from AdS3, allowing for other asymptotes (e.g., Lifshitz) or including curvature
singularities. [Bergshoeff, Hohm, Townsend; Oliva, Tempo, Troncoso; Clement, Alkac, Kili-
carslan, Tekin; Ayon-Beato, Garbarz, Giribet, Hassaine;...]

� New solutions when additional matter is included, e.g., for Einstein-Maxwell,
Einstein-Maxwell-dilaton systems: typically logarithmic profiles for some of the
fields and curvature singularities. [Kamata, Koikawa; Martinez, Teitelboim, Zanelli;
Hirschmann, Welch; Cataldo, Salgado; Dias, Lemos; Chan, Mann; Fernando;...]

� Also for minimally and non-minimally coupled scalars (some obtained from well-
defined limits of Lovelock theories): typically contain curvature singularities and
sometimes globally regular scalars. [Henneaux, Martinez, Troncoso, Zanelli; Zhao, Xu,
Zhu; Tang, Ong, Wang, Papantonopoulos; Baake, Bravo Gaete, Hassaine; Hennigar, Kubiznak,
Mann; Konoplya, Zhidenko;...]

� Einstein gravity plus non-linear electrodynamics. [Cataldo, Garcia; Myung, Kim,
Park;...] Examples of singularity-free black holes for special choices of the modified
Maxwell Lagrangian. [Cataldo, Garcia; He, Ma; Mazharimousavi, Halilsoy, Tahamtan]
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Introduction Black holes in three dimensions

Beyond BTZ

Here we will try an approach which has turned out very
fruitful in higher dimensions.

We will consider higher-curvature modifications of Einstein
gravity which go by the name of

“(Generalized) Quasi-topological gravities”.

These are D ≥ 4 theories distinguished by having eom of a
reduced order (≤ 2) when evaluated on certain ansatze.

A similar setup will be the one for our new D = 3 black holes...
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Introduction Generalized Quasi-topological gravities

What are GQT gravities?

They are higher-curvature generalizations of Einstein gravity L[gab, Rabcd] such that:
[PB, Cano; Hennigar, Kubiznak, Mann]

� They have a well-defined and continuous Einstein gravity limit.

� They admit static and spherically symmetric solutions with gttgrr = −1, i.e.,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2)

� f(r) satisfies a differential equation of order ≤ 2. There are two cases:
− f(r) satisfies an algebraic equation, in which case we call the theory “Quasi-

topological” [Oliva, Ray; Myers, Robinson] (∃ for D ≥ 5)
− f(r) satisfies a differential equation of order 2, in which case the theory is

called “Generalized Quasi-topological”. (∃ for D ≥ 4)

� The linearized equations around maximally symmetric backgrounds are 2nd-order.
Their properties have been studied in ∼ 80 papers with many interesting results...

[Oliva, Ray, Myers, Robinson, PB, Cano, Hennigar, Mann, Kubiznak, Ruipérez, Moreno, Mur-
cia, Edelstein, Arciniega, Jaime, Ahmed, Mir, Poshteh, Cisterna, Grandi, Guajardo, Has-
saine, Pereniguez, Dehghani, Vahidinia, Paulos, Sinha, Feng, Huang, Mai, Lu, Frassino, Rocha,
Mehdizadeh, Ziaie, Fierro, Mora, Vazquez, Vilar, Quiros, de Arcia, Garcia-Salcedo, Gonzalez,
Linares Cedeño, Jimenez, Jimenez-Cano, Pookkillath, de Felipe, Starobinsky...]
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Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3.

What if
we include extra fields into the game? There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3. What if
we include extra fields into the game?

There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3. What if
we include extra fields into the game? There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3. What if
we include extra fields into the game? There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3. What if
we include extra fields into the game? There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3. What if
we include extra fields into the game? There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3. What if
we include extra fields into the game? There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Introduction Generalized Quasi-topological gravities

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3. What if
we include extra fields into the game? There is indeed a natural generalization of
GQTs in D = 4 which includes an additional Maxwell field [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms

where the extra terms are formed from contractions of the Riemann tensor and
the field strength, schematically, ∼ RnF 2m.

� “Electromagnetic (Generalized) Quasi-topological” admit “magnetic” solutions

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , Fmag. = P sin θdθ ∧ dφ

� Where the function f(r) again satisfies an equation which may be algebraic (Quasi-
topological) or differential of order 2 (Generalized Quasi-topological).

� Can be alternatively described in dual frame, in which f(r) satisfies the same
equation and F elec. ∼ Φ′(r)dt ∧ dr.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 6 / 22



Electromagnetic Quasi-topological gravities in three dimensions

2. Electromagnetic
Quasi-topological gravities in

three dimensions
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Electromagnetic Quasi-topological gravities in three dimensions Equations and static solutions

EM-QT gravities in D = 3

� We define “Electromagnetic Generalized Quasi-topological” gravities
in D = 3

by the condition that a general Lagrangian√
|g|L[gab, Rab, ∂aφ]

becomes a total derivative when evaluated on

ds2 = −f(r)dt2 + dr2

f(r) + r2dϕ2 , φ = pϕ ,

where p is an arbitrary dimensionless constant. In that case, the
theory admits a solution of this form and the equation of f(r) may
be algebraic or differential of order 2.

� When the equation of f(r) is algebraic, we call the theory “Electro-
magnetic Quasi-topological” (EM-QT).

� In general, there exists a dual “electric” frame

LEMQT[gab, Rab, ∂aφ] ⇐⇒ LEMQT
dual [gab, Rab, Fab] ,

with solutions F ∝ dt ∧ dr.
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be algebraic or differential of order 2.

� When the equation of f(r) is algebraic, we call the theory “Electro-
magnetic Quasi-topological” (EM-QT).

� In general, there exists a dual “electric” frame

LEMQT[gab, Rab, ∂aφ] ⇐⇒ LEMQT
dual [gab, Rab, Fab] ,

with solutions F ∝ dt ∧ dr.
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EM-QT gravities in D = 3

� We find the following families of EM-QT theories

IEMQT = 1
16πG

∫
d3x
√
|g|
[
R+ 2

L2 −Q
]
,

where

Q ≡+
∑
n=1

αnL
2(n−1)(∂φ)2n

−
∑
m=0

βmL
2(m+1)(∂φ)2m [(3 + 2m)Rbc∂bφ∂cφ−R (∂φ)2] ,

where (∂φ)2 ≡ (gab∂aφ∂bφ), and where the αn, βm are arbitrary di-
mensionless constants.
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Equations and static solutions

The full non-linear equations of this theory evaluated for the ansatz

ds2 = −f(r)dt2 + dr2

f(r) + r2dϕ2 , φ = pϕ ,

reduce to a single independent equation for f(r) which can be inte-
grated once and solved. The result is

f(r) =

[
r2

L2 − µ− α1p
2 log(r/L) +

∑
n=2

αnp
2nL2(n−1)

2(n− 1)r2(n−1)

]
[

1 +
∑
m=0

βmp
2(m+1)(2m+ 1)L2(m+1)

r2(m+1)

] .
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2(n− 1)r2(n−1)

]
[
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∑
m=0
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2(m+1)(2m+ 1)L2(m+1)
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] .

� Multiparametric continuous generalization of BTZ. Reduces to it for
αn≥1 = βm≥0 = 0.

� Fully analytic. Simple dependence on radial coordinate.

� When only α1 is on, this is the charged BTZ metric with Q2 ≡ 2α1p
2.
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Black holes

f(r) =

[
r2

L2 − µ− α1p
2 log(r/L) +

∑
n=2

αnp
2nL2(n−1)

2(n− 1)r2(n−1)

]
[

1 +
∑
m=0

βmp
2(m+1)(2m+ 1)L2(m+1)

r2(m+1)

] .

� Depending on the values of the αn and the βm, this describes different
kinds of solutions. Firstly, the number of horizons depends on the
number of positive zeros of the numerator which in turn depends on
the values and signs of the αn.

� As r → 0, the spacetime can look very different, depending on the
value of the combination mmax + 2−nmax, where nmax and mmax are
the largest values of n andm corresponding to non-vanishing αn’s and
βm’s.
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Black holes Black holes with curvature singularities

Black holes with curvature singularities

� Whenever f(r) contains at least a real zero and nmax > mmax + 2 ⇒
curvature singularity. [BTZ plotted in red]
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Black holes Black holes with BTZ-like or conical singularities

BHs with BTZ-like or conical singularities

The BTZ metric is locally equivalent to pure AdS3. All curvature
invariants are constant.

There are, nonetheless, singularities (except
for µ = −1). Consider constant t slices as r → 0:

µ < 0 ⇔ +dr2

|µ|
+ r2dϕ2

µ > 0 ⇔ −dr2

|µ|
+ r2dϕ2

� The first case corresponds to a standard conical singularity at r = 0
with deficit angle ∆ϕ = 2π(1−

√
|µ|).

� The second, “BTZ like”, corresponds to a singularity in the causal
structure at r = 0, where spacetime ceases to be Haussdorf.
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Black holes Black holes with BTZ-like or conical singularities

BHs with BTZ-like or conical singularities

� Both kinds of singularities appear for some of our new black holes.

This happens for nmax = mmax + 2. In that case, the metric function
and the curvature invariants tend to constant values at r = 0.
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Black holes Regular black holes

Regular black holes
Regular black holes are spacetimes which contain event horizons but
no singularity of any kind.

The prototypical example in general di-
mensions [e.g., Hayward] for a static metric of the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
(D−2)

so that:

� The metric function has at least one zero, f(r+) = 0 for some r+ ≥ 0.

� Asymptotes to MinkD, AdSD or dSD for r →∞.

� All curvature invariants are finite everywhere and, in particular,

f(r) r→0= 1 +O(r2) ,

which prevents conical, “BTZ-like”, and other types of singularities.

� Recall for BTZ: f(r) r→0= −µ, which is only regular for µ = −1.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 15 / 22



Black holes Regular black holes

Regular black holes
Regular black holes are spacetimes which contain event horizons but
no singularity of any kind. The prototypical example in general di-
mensions [e.g., Hayward] for a static metric of the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
(D−2)

so that:

� The metric function has at least one zero, f(r+) = 0 for some r+ ≥ 0.

� Asymptotes to MinkD, AdSD or dSD for r →∞.

� All curvature invariants are finite everywhere and, in particular,

f(r) r→0= 1 +O(r2) ,

which prevents conical, “BTZ-like”, and other types of singularities.

� Recall for BTZ: f(r) r→0= −µ, which is only regular for µ = −1.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 15 / 22



Black holes Regular black holes

Regular black holes
Regular black holes are spacetimes which contain event horizons but
no singularity of any kind. The prototypical example in general di-
mensions [e.g., Hayward] for a static metric of the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
(D−2)

so that:

� The metric function has at least one zero, f(r+) = 0 for some r+ ≥ 0.

� Asymptotes to MinkD, AdSD or dSD for r →∞.

� All curvature invariants are finite everywhere and, in particular,

f(r) r→0= 1 +O(r2) ,

which prevents conical, “BTZ-like”, and other types of singularities.

� Recall for BTZ: f(r) r→0= −µ, which is only regular for µ = −1.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 15 / 22



Black holes Regular black holes

Regular black holes
Regular black holes are spacetimes which contain event horizons but
no singularity of any kind. The prototypical example in general di-
mensions [e.g., Hayward] for a static metric of the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
(D−2)

so that:

� The metric function has at least one zero, f(r+) = 0 for some r+ ≥ 0.

� Asymptotes to MinkD, AdSD or dSD for r →∞.

� All curvature invariants are finite everywhere and, in particular,

f(r) r→0= 1 +O(r2) ,

which prevents conical, “BTZ-like”, and other types of singularities.

� Recall for BTZ: f(r) r→0= −µ, which is only regular for µ = −1.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 15 / 22



Black holes Regular black holes

Regular black holes
Regular black holes are spacetimes which contain event horizons but
no singularity of any kind. The prototypical example in general di-
mensions [e.g., Hayward] for a static metric of the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
(D−2)

so that:

� The metric function has at least one zero, f(r+) = 0 for some r+ ≥ 0.

� Asymptotes to MinkD, AdSD or dSD for r →∞.

� All curvature invariants are finite everywhere and, in particular,

f(r) r→0= 1 +O(r2) ,

which prevents conical, “BTZ-like”, and other types of singularities.

� Recall for BTZ: f(r) r→0= −µ, which is only regular for µ = −1.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 15 / 22



Black holes Regular black holes

Regular black holes
Regular black holes are spacetimes which contain event horizons but
no singularity of any kind. The prototypical example in general di-
mensions [e.g., Hayward] for a static metric of the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
(D−2)

so that:

� The metric function has at least one zero, f(r+) = 0 for some r+ ≥ 0.

� Asymptotes to MinkD, AdSD or dSD for r →∞.

� All curvature invariants are finite everywhere and, in particular,

f(r) r→0= 1 +O(r2) ,

which prevents conical, “BTZ-like”, and other types of singularities.

� Recall for BTZ: f(r) r→0= −µ, which is only regular for µ = −1.

Pablo Bueno Regular black holes in three dimensions 14/09/2021 15 / 22



Black holes Regular black holes

Regular black holes: take one

� We also have solutions of this kind.

Achieving the f(r) r→0= 1 behavior
requires imposing a condition between the charge p and the action
parameters.

� The simplest example corresponds to:

LEMQT = R+ 2
L2 − α2L

2(∂φ)4 + β0L
2[3Rbc∂bφ∂cφ− (∂φ)2R] ,

and the solution reads

f(r) =

[
r2

L2 − µ+ 2β2
0L

2

α2r2

]
[
1 + 2β2

0L
2

α2r2

] , φ = ϕ

√
2β0

α2
.
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Black holes Regular black holes

Regular black holes: take one

[In orange, regular black holes with two horizons and a
extremal one (dashed). The green curves correspond to

horizonless solutions which are completely regular everywhere.]
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Black holes Regular black holes

Regular black holes: take two

� There is an additional way to achieve singularity-free black holes
within the present setup which do not require imposing any constraint
at all.

� This happens when f(r) vanishes as some positive power of r near the
origin,

f(r) r→0= O(r2s) , s ≥ 1 ,

with the curvature invariants tending to constant values there (being
also finite everywhere else).

� This is particular to D = 3. In higher dimensions, a behavior like
that would produce a curvature singularity at r = 0.

� Achieved whenever mmax > nmax− 2 if nmax ≥ 2 or whenever some βm
is active and all the αn’s are zero.

� Here, the point r = 0 becomes a sort of new asymptotic region.
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Black holes Regular black holes

Regular black holes: take two

� The simplest case corresponds to the theory:

LEMQT = R+ 2
L2 + β0L

2[3Rbc∂bφ∂cφ− (∂φ)2R] ,

and the solution reads

f(r) =

[
r2

L2 − µ
]

[
1 + β0L

2p2

r2

] , φ = pϕ ,

where all the constants: µ, p, β0 and L2 are free parameters.
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Black holes Regular black holes

Regular black holes: take two

[Examples with one and two horizons shown in orange. Globally
regular horizonless solutions with this behavior also exist (green).]
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Things to remember

� I have presented new families of “Electromagnetic Quasi-topological
gravities” in three dimensions.

� The theories are given by, LEMQT = 1
16πG

[
R+ 2

L2 −Q
]
where

Q ≡+
∑
n=1

αnL
2(n−1)(∂φ)2n

−
∑
m=0

βmL
2(m+1)(∂φ)2m

[
(3 + 2m)Rbc∂bφ∂cφ−R (∂φ)2

]
.

� They admit static (easily generalizable to rotating) solutions of the
form

ds2 = −f(r)dt2 + dr2

f(r) + r2dϕ2 , φ = pϕ ,
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Things to remember

� with

f(r) =

[
r2

L2 − µ− α1p
2 log(r/L) +

∑
n=2

αnp2nL2(n−1)

2(n− 1)r2(n−1)

]
[

1 +
∑
m=0

βmp2(m+1)(2m+ 1)L2(m+1)

r2(m+1)

] .

� These can describe black holes with one or several horizons and with
different kinds of singularities: curvature, conical, BTZ-like.

� In some cases the black holes have no singularity at all. This happens
for f(r) r→0→ 1 and for f(r) r→0→ O(r2s). In the latter case, this is
achieved without imposing any condition between the parameters.
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Generalized Quasi-topological gravities
Criterion: 2nd-order eqs on certain backgrounds.

2nd-order eqs ∀ backgrounds ⇒
Lovelock gravities [Lanczos; Lovelock]

2nd-order traced eqs ∀ backgrounds ⇒
Quasi-topological gravities I [Oliva, Ray]

2nd-order eqs on max. sym. backg. and gttgrr = −1 BHs +
algebraic eq for f(r) ≡ gtt ⇒
Quasi-topological gravities II [Oliva, Ray; Myers, Robinson; . . . ]

All these only exist for D ≥ 5

2nd-order eqs on max. sym. backg. and gttgrr = −1 BHs ⇒
Generalized Quasi-topological gravities
[PB, Cano, Hennigar, Mann, Kubiznak, . . . ]

They exist for D ≥ 4
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Some general properties of (G)QTs
∼ 65-75 related papers since 2016

� Well-defined, continuous Einstein gravity limit.

� 2nd-order eqs on max. sym. backgrounds, GLab = 8πGeffTab.

� Generalizations of Schwarzschild-AdS BH with gttgrr = −1. f(r) ≡
gtt satisfies diff. eq of order ≤ 2. In all cases, single BH solution fully
characterized by its mass (non-hairy).

� Thermodynamic properties of BHs can be computed analytically. D =
4 BHs become stable below certain mass (Schwarzschild itself only
exception). Infinite evaporation times. [PB, Cano]

� Coupling to Maxwell field produces several different solutions with the
same mass and charge. Charged black holes do not possess an inner
horizon and violate Einstein gravity extremality bound. [Frassino, Rocha]

� Phenomenological deviations from Einstein gravity: shadows, etc.
[Hennigar, Poshteh, Mann]
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Some general properties of (G)QTs
∼ 60-70 related papers since 2016

� Some of the QT theories satisfy Birkhoff theorems. [Oliva, Ray]

� Additional solutions: wormholes, extremal rotating, slowly rotating...
[Feng, Huang, Mai, Lu; Mehdizadeh, Ziaie; Cano, Pereñiguez; Adair, PB, Cano, Hennigar,

Mann; Fierro, Mora, Oliva...]

� Similar integrability phenomenon for Taub-NUT/bolt solutions for
subset of theories. Generalizations of Einstein gravity’s. First exam-
ples in D = 4. Analytic thermodynamics. [PB, Cano, Hennigar, Mann]

� 2nd-order generalized Friedmann equations for scale factor for subset
of theories. Inflation generated at early times by radiation-dominated
universe, gracefully connected to standard late-time Λ-CDM accel-
eration. Infinite tower of higher-curvature theories ⇒ exponential
inflation. Recent developments. [Arciniega, Edelstein, Jaime; Cisterna, Grandi,

Oliva; Arciniega, Bueno, Cano, Edelstein, Hennigar, Jaime; Edelstein, Vazquez, Vilar; Quiros,

de Arcia, Garcia-Salcedo, Gonzalez, Linares Cedeño; Jimenez, Jimenez-Cano; Pookkillath, de

Felipe, Starobinsky;... ]
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Some general properties of (G)QTs
∼ 60-70 related papers since 2016

� QT and GQT densities ∃ at all orders in curvature. [PB, Cano, Hennigar]

� Any higher-curvature effective action can be mapped to a GQT by a
field redefinition. [PB, Cano, Moreno, Murcia]

� D = 4 GQTs define holographic toy-models of d = 3 CFTs (analo-
gously to e.g., Gauss-Bonnet and QT in D ≥ 5). [PB, Cano, Ruiperez]

� New universal results for general CFTs from holographic duals (re-
garding Euclidean partition functions on deformed spheres). [PB, Cano,
Hennigar, Mann]

And more...
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Adding rotation

Adding rotation

� The static solutions can be easily generalized into rotating ones by
performing a boost in the t and ϕ coordinates,

t→ γt− Lωϕ , ϕ→ γϕ− ωt/L .

We get

ds2 = −r
2f

ρ2 dt2 + dr2

f
+ ρ2 [dϕ+Nϕdt]2 , φ = p

[
γϕ− ωt

L

]
,

where

ρ2 ≡ r2 − ω2[L2f − r2] , Nϕ ≡ γω[L2f − r2]
Lρ2 .

� The “trick” is that this change of variables is only defined locally, so
that the global structure of the resulting spacetimes is different from
their static counterparts.
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Adding rotation

Dual frame

� Leading term is the usual Maxwell piece, which explains match with
charged BTZ.

� Solutions of LEMQT are also solutions of Ldual.
� In the dual frame, solutions become “electrically charged”, with a field

strength F = −(∂At(r)/∂r) dt ∧ dr, where At(r) is the electrostatic
potential.

� Remarkably, this quantity can be obtained exactly and it reads

At(r) =− α1p log(r/L) +
∑
n=2

nαnp

2(n− 1)

(
Lp

r

)2(n−1)

+ f ′(r)L
∑
m=0

βm(m+ 1)
(
Lp

r

)2m+1
,

with the f(r) given before.
� We can think of new solutions as “magnetic” or “electric” depending

on which frame we choose.
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Dual frame

Dual frame

� Dual description in terms of EM field

L[gab, Rab, ∂aφ] ⇐⇒ Ldual[gab, Rab, Fab] ,

where the dual field strength and Lagrangian are defined by

Fab ≡ −
1
2εabc

∂L
∂ (∂cφ) , Ldual ≡ L− Fab∂cφεabc

� For our theories, solving ∂φ(F ) to write down Ldual explicitly very
difficult. Perturbatively:

Ldual = R+ 2
L2 −

F 2

2α1
+ L2

[
3β0

α2
1
F c
a F abR〈cb〉 −

α2

4α4
1

(F 2)2
]

+O(L4) .

Leading term is Maxwell piece, which explains match with charged
BTZ.

� In dual frame, solutions become “electric”, with a field strength F =
−(∂At(r)/∂r) dt ∧ dr, where At(r) is the electrostatic potential.
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Leading term is Maxwell piece, which explains match with charged
BTZ.

� In dual frame, solutions become “electric”, with a field strength F =
−(∂At(r)/∂r) dt ∧ dr, where At(r) is the electrostatic potential.
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Dual frame

What are GQT gravities?

Consider some purely gravitational action I[gab, Rabcd] and a general
static and spherically symmetric ansatz,

ds2|N,f = −N(r)f(r)dt2 + dr2

f(r) + r2dΩ2
(D−2) .

Let IN,f be the one-dimensional action resulting from evaluation on
this ansatz, and If ≡ I1,f .

� We say that I[gab, Rabcd] is of the “Generalized Quasi-topological”
class if the Euler-Lagrange equation of f(r) associated to If vanishes
identically, i.e., if

δIf
δf

= 0 , ∀ f(r) .

This is equivalent to
√
|g|L[gab, Rab] becoming a total derivative when

evaluated on ds2|f .
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Dual frame

Electromagnetic QT gravities

� A preliminary analysis shows that no non-trivial GQTs exist in D = 3.
Is there anything we can do?

What if we include extra fields into the
game? Consider a four-dimensional theory [Cano, Murcia]

L[gab, Rabcd, Fab] = R− F 2 + higher order terms
where the extra terms are formed from contractions of the Riemann
tensor and the field strength, schematically, ∼ RnF 2m.

� We call a theory of that kind “Electromagnetic (Generalized) Quasi-
topological” if for a magnetic ansatz

ds2|f = −f(r)dt2+ dr2

f(r) +r2(dθ2+sin θ2dφ) , Fmag. = P sin θdθ∧dφ

the Euler-Lagrange eq. of f(r) for the on-shell Lagrangian
√
|g|L

∣∣∣
f,Fmag

vanishes identically.
� Then, the theory admits solutions with gab and Fab given by those

expressions with f(r) satisfying a differential equation of order ≤ 2.
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