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e A Virial identity is a relation between energy quantities.

e Mathematical identity derived independently of the equations
of motion.

e Can be used to restrict possibility of solutions and as
numerical checks for numerical solutions.
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For a stable system of N particles in classical mechanics:

1 2 o
(1) =3
———

NI GREE Potential energy

e A statistical result!
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We can usually drop the At to obtain

tr 1 .
/ <T+ EZ'N=1F" : F,-) dt =0
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Well known case

Consider

e Conservative forces derivable from a potential U

e U is a homogeneous function of degree n of the particle’s

position
()
T)=n—
(T)=n"

e Can also be derived from a variational problem!

o We will discuss this identity in the context of field theory.
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e time independence ¢ = ¢(r)
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Derrick’s scaling argument - Scalar field in flat spacetime

Consider the following action

1
§= o / d*x [~8,001p — U(9)]

Consider

e time independence ¢ = ¢(r)
e the scaling r— Ar’
e one-parameter group of scaled functions ¢(r) = ¢(Ar)

Serr = Sigr = /)‘3d3 [ )\12 (V6r)* = U(ex)

6Seff
oA

A=1
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/ *x [(V$)* +3U(¢)] =0

e If U(¢) > 0, both terms are positive = no solutions are
possible.
= Virial identities can then be used to prove no go
theorems.

e Derrick also showed that no solutions are possible for any

U(9).
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Heusler-Straumann approach - Asymptotically flat, spherical

spacetimes

Consider

e the action
1 4 R
S=8ey+Sm=— [ dx/—g | =+ Lnm
47 4
e the metric ansatz

d2
T4 Pd? N(r)=1-

ds? = —a?(r)N(r)dt? + NG p

e Parametrizing functions (o, m).



ds? = —a?(r)N(r)dt?® +

dr?

N(r)

+ r?dQ?
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dr?

ds? = —a?(r)N(r)dt?® + N

+ r?dQ? N(r)=1-—

VvV—gR =40om’sinf + %()
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2
97 ez Ny =1 270

ds® = —02(r)N(r)dt2 + NP ;

V—gR =4om’sin + %()

Ignoring total derivative terms...

1D effective action

Serr = / dr (am’ + Ur2£m)
0
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Applying the scaling

o r— \r
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Applying the scaling

e r— Ar
[} a,\(r) = U()\r),

mx(r) = m(Ar)
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Applying the scaling

e r—\r
e o)\(r)=oa(Ar), my(r) = m(\r)

5Seff _ Y 3,
5)\_V /drar(s)\()\£>

Gravitational action contribution Vg to the Virial identity vanishes
for this ansatz.
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Example - scalar field in curved spacetime

ch=-(1-2") 0 v
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Example - scalar field in curved spacetime

Virial identity - Scalar field

/ - dror® [¢” +3U(¢)] =0
0

No go theorem still valid in curved spherical spacetime!
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Black Hole spacetimes

For Black hole spacetimes...

e The integration range is now [ry, +00l.
=r—rn=ryg+Ar—ry).

o ox(r)=o(r), ma(r)=m(r\), éx(r)=o(r)

Virial identity - Scalar field, BH spacetime

[ooe [ ) o (- 2] -

Both coefficients still positive = Theorem still holds!
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The Gibbons-Hawking-York term
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An inconsistency - the total derivative term

Consider a functional f[o(r), m(r), r] such that

d
Sigr = Setr + / dr = Flo(r), m(r), 1]
e The equations of motion for 8’ and S are the same.

e However the Virial identities are not

5S2 5

A |, + [(”\f[(f)\(r),mA(r),)\r]

l, =
A=110

What is the correct surface term that we should take into account?

ii5)



Another inconsistency - the ansatz
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Another inconsistency - the ansatz

e Heusler-Straumann approach does not work for other ansatze.

dr?

2 12
N + rdS

ds? = —a?(r)N(r)dt* +
e (o0, N) as parametrising functions

e Ignoring total derivative terms Vry, still results in a
contribution from the gravitational term Vg
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Another inconsistency - the ansatz

Heusler-Straumann approach does not work for other ansatze.

dr?
2_ _ 2 2 2 102
ds® = —o“(r)N(r)dt” + NG + redQQ

(o, N) as parametrising functions

Ignoring total derivative terms V', still results in a
contribution from the gravitational term Vg

Vk does not vanish for Schwarzschild spacetime

Total derivative (surface) term V74 is required.
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Yuv - 3-metric of the boundary OM

e K - Extrinsic curvature of OM
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a manifold M with a boundary OM
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The Gibbons-Hawking-York (GHY) term

S=1— /d“xﬁfu /Wcﬁxm(K—Ko)

w - 3-metric of the boundary OM
e K - Extrinsic curvature of OM

Ko - Extrinsic curvature of M imbedded in flat spacetime

Necessary term to have a well posed variational principle in
a manifold M with a boundary OM

We have three gravitational Virial contributions

Ve+ Vig+ Veuy + Vi, =0
SN———— ~—~

Surface terms Matter

Gravitational contribution

17



GHY Virial contribution

Very =2 [;)\ <\/T7/\(K)\ - Ko,\)>

>\—1:| oM

e Along with the total derivative contribution V74, it removes
the second derivative terms from the action.
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GHY contribution for the (o, m) ansatz

For the (o, m) ansatz

Vs = Veny + Vg = 40 (1 - r"")) (r—ry)

r(r—2m
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For the (o, m) ansatz
r—m
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GHY contribution for the (o, m) ansatz

For the (o, m) ansatz
r—m
Vs =Veuy + Vg =40 |1 — ————= | (r — 1)
r(r —2m)

e Vanishes for most solutions! = reason why the H-S approach
works

e Other ansatze can have non-vanishing Vs

19



The (o, N) ansatz

dr?

2 102
dQ2
Ny

ds? = —o?(r)N(r)dt® +
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The (o, N) ansatz

dr?

2 102
Q
N(r)—i—rd

ds? = —a?(r)N(r)dt® +

e ¢ and N parametrising functions.
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The (o, N) ansatz

dr?

2 Q2
N(r)+r d

ds? = —a?(r)N(r)dt® +

e ¢ and N parametrising functions.

e Viyy = 0 for Schwarzschild spacetime = requires only the
Vk and V14 terms

= Vr+ V=0

20



The necessity of the GHY term - Reissner-Nordstrom space-
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The necessity of the GHY term - Reissner-Nordstrom space-

time

What about Reissner-Nordstrom spacetime in the (o, N) ansatz?

1
[,m = —ZFIWFMV = VEM =0

o All gravitational contributions are non-vanishing

= Vr+ Vg + Vguyy =0

e This shows how both the total derivative term V74 and the
GHY contribution Vgyy are necessary.

21



Summary and Implications

22



Summary and Implications

e We realized that the GHY term is essential to the complete
and correct derivation of the Virial identity.

23



Summary and Implications

e We realized that the GHY term is essential to the complete
and correct derivation of the Virial identity.

e This more complete derivation allows us to consider other
different ansatze.

23



Summary and Implications

e We realized that the GHY term is essential to the complete
and correct derivation of the Virial identity.

e This more complete derivation allows us to consider other
different ansatze.

o Allows the calculation of virial identities for other kinds of
symmetries and higher dimensional effective actions, like
stationary and axisymmetric spacetimes.

23



Summary and Implications

e We realized that the GHY term is essential to the complete
and correct derivation of the Virial identity.

e This more complete derivation allows us to consider other
different ansatze.

o Allows the calculation of virial identities for other kinds of
symmetries and higher dimensional effective actions, like
stationary and axisymmetric spacetimes.

o All this and more in a future companion paper.

To be continued...
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Einstein-Hilbert integrand

iy

d
L SR=20(1-rN—N) - — (2r?0'N + r’oN')

d
=4om + 25 [r'(2m — r) 4+ o(m'r — m)]

GHY integrand
i

sind

2
(K = Ko) = ZoN' +2ro(N = VN) + 2'N

2
:rU’(r—Zm)—J<m’r+2r\/1—m—2r+3m>
r

25



Virial - vacuum GR (0 — N) ansatz

2 /r'oo o [N =1+ (r — rg)N'] dr = {40(N ~VN)(r - rH)]

H

Virial - vacuum GR (o, m) ansatz

o (i) -

—+o00

H
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