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What is a Virial identity?

� A Virial identity is a relation between energy quantities.

� Mathematical identity derived independently of the equations

of motion.

� Can be used to restrict possibility of solutions and as

numerical checks for numerical solutions.
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Virial identity in Classical Mechanics

For a stable system of N particles in classical mechanics:

〈T 〉︸︷︷︸
Kinetic energy

= −1

2
ΣN

i=1〈~Fi · ~ri 〉︸ ︷︷ ︸
Potential energy

� A statistical result!

〈x〉 =
1

∆t

∫ tf

ti

xdt

We can usually drop the ∆t to obtain∫ tf

ti

(
T +

1

2
ΣN

i=1
~Fi · ~ri

)
dt = 0
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Well known case

Consider

� Conservative forces derivable from a potential U

� U is a homogeneous function of degree n of the particle’s

position

Virial theorem

〈T 〉 = n
〈U〉

2

� Can also be derived from a variational problem!

� We will discuss this identity in the context of field theory.
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Derrick’s scaling argument - Scalar field in flat spacetime

Consider the following action

S =
1

4π

∫
d4x [−∂µφ∂µφ− U(φ)]

Consider

� time independence φ = φ(~r)

� the scaling ~r → λ~r

� one-parameter group of scaled functions φλ(~r) = φ(λ~r)

Seff → Sλeff =
1

4π

∫
λ3d3x

[
− 1

λ2
(∇φλ)2 − U(φλ)

]
δSλeff

δλ

∣∣∣∣
λ=1

= 0

6



Derrick’s scaling argument - Scalar field in flat spacetime

Consider the following action

S =
1

4π

∫
d4x [−∂µφ∂µφ− U(φ)]

Consider

� time independence φ = φ(~r)

� the scaling ~r → λ~r

� one-parameter group of scaled functions φλ(~r) = φ(λ~r)

Seff → Sλeff =
1

4π

∫
λ3d3x

[
− 1

λ2
(∇φλ)2 − U(φλ)

]
δSλeff

δλ

∣∣∣∣
λ=1

= 0

6



Derrick’s scaling argument - Scalar field in flat spacetime

Consider the following action

S =
1

4π

∫
d4x [−∂µφ∂µφ− U(φ)]

Consider

� time independence φ = φ(~r)

� the scaling ~r → λ~r

� one-parameter group of scaled functions φλ(~r) = φ(λ~r)

Seff → Sλeff =
1

4π

∫
λ3d3x

[
− 1

λ2
(∇φλ)2 − U(φλ)

]
δSλeff

δλ

∣∣∣∣
λ=1

= 0

6



Derrick’s scaling argument - Scalar field in flat spacetime

Consider the following action

S =
1

4π

∫
d4x [−∂µφ∂µφ− U(φ)]

Consider

� time independence φ = φ(~r)

� the scaling ~r → λ~r

� one-parameter group of scaled functions φλ(~r) = φ(λ~r)

Seff → Sλeff =
1

4π

∫
λ3d3x

[
− 1

λ2
(∇φλ)2 − U(φλ)

]
δSλeff

δλ

∣∣∣∣
λ=1

= 0

6



Derrick’s scaling argument - Scalar field in flat spacetime

Consider the following action

S =
1

4π

∫
d4x [−∂µφ∂µφ− U(φ)]

Consider

� time independence φ = φ(~r)

� the scaling ~r → λ~r

� one-parameter group of scaled functions φλ(~r) = φ(λ~r)

Seff → Sλeff =
1

4π

∫
λ3d3x

[
− 1

λ2
(∇φλ)2 − U(φλ)

]

δSλeff

δλ

∣∣∣∣
λ=1

= 0

6



Derrick’s scaling argument - Scalar field in flat spacetime

Consider the following action

S =
1

4π

∫
d4x [−∂µφ∂µφ− U(φ)]

Consider

� time independence φ = φ(~r)

� the scaling ~r → λ~r

� one-parameter group of scaled functions φλ(~r) = φ(λ~r)

Seff → Sλeff =
1

4π

∫
λ3d3x

[
− 1

λ2
(∇φλ)2 − U(φλ)

]
δSλeff

δλ

∣∣∣∣
λ=1

= 0

6



Derrick’s Virial Identity∫
d3x

[
(∇φ)2 + 3U(φ)

]
= 0

� If U(φ) > 0, both terms are positive ⇒ no solutions are

possible.

⇒ Virial identities can then be used to prove no go

theorems.

� Derrick also showed that no solutions are possible for any

U(φ).
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Heusler-Straumann approach - Asymptotically flat, spherical

spacetimes

Consider

� the action

S = SEH + Sm =
1

4π

∫
d4x
√
−g
(
R

4
+ Lm

)
� the metric ansatz

ds2 = −σ2(r)N(r)dt2 +
dr2

N(r)
+ r2dΩ2 N(r) = 1− 2m(r)

r

� Parametrizing functions (σ,m).
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ds2 = −σ2(r)N(r)dt2 +
dr2

N(r)
+ r2dΩ2 N(r) = 1− 2m(r)

r

√
−gR = 4σm′ sin θ +

d

dr
(...)

Ignoring total derivative terms...

1D effective action

Seff =

∫ ∞

0
dr
(
σm′ + σr2Lm

)
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Applying the scaling

� r → λr

� σλ(r) = σ(λr), mλ(r) = m(λr)

δSλeff

δλ
= Vm =

∫
drσr2

δ

δλ

(
λ3Lλm

)

Gravitational action contribution VR to the Virial identity vanishes

for this ansatz.
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Example - scalar field in curved spacetime

Lφm = −
(

1− 2m

r

)
φ′2 − U(φ)

Virial identity - Scalar field∫ ∞

0
drσr2

[
φ′2 + 3U(φ)

]
= 0

No go theorem still valid in curved spherical spacetime!
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Black Hole spacetimes

For Black hole spacetimes...

� The integration range is now [rH ,+∞[.

⇒ r → rλ = rH + λ(r − rH).

� σλ(r) = σ(rλ), mλ(r) = m(rλ), φλ(r) = φ(rλ)

Virial identity - Scalar field, BH spacetime

∫ ∞

0
drσr2

[(
1 +

2rH
r

(m
r
− 1
))

φ′2 +

(
3− 2rH

r

)
U(φ)

]
= 0

Both coefficients still positive ⇒ Theorem still holds!

13



Black Hole spacetimes

For Black hole spacetimes...

� The integration range is now [rH ,+∞[.

⇒ r → rλ = rH + λ(r − rH).

� σλ(r) = σ(rλ), mλ(r) = m(rλ), φλ(r) = φ(rλ)

Virial identity - Scalar field, BH spacetime

∫ ∞

0
drσr2

[(
1 +

2rH
r

(m
r
− 1
))

φ′2 +

(
3− 2rH

r

)
U(φ)

]
= 0

Both coefficients still positive ⇒ Theorem still holds!

13



Black Hole spacetimes

For Black hole spacetimes...

� The integration range is now [rH ,+∞[.

⇒ r → rλ = rH + λ(r − rH).

� σλ(r) = σ(rλ), mλ(r) = m(rλ), φλ(r) = φ(rλ)

Virial identity - Scalar field, BH spacetime

∫ ∞

0
drσr2

[(
1 +

2rH
r

(m
r
− 1
))

φ′2 +

(
3− 2rH

r

)
U(φ)

]
= 0

Both coefficients still positive ⇒ Theorem still holds!

13



Black Hole spacetimes

For Black hole spacetimes...

� The integration range is now [rH ,+∞[.

⇒ r → rλ = rH + λ(r − rH).

� σλ(r) = σ(rλ), mλ(r) = m(rλ), φλ(r) = φ(rλ)

Virial identity - Scalar field, BH spacetime

∫ ∞

0
drσr2

[(
1 +

2rH
r

(m
r
− 1
))

φ′2 +

(
3− 2rH

r

)
U(φ)

]
= 0

Both coefficients still positive ⇒ Theorem still holds!

13



Black Hole spacetimes

For Black hole spacetimes...

� The integration range is now [rH ,+∞[.

⇒ r → rλ = rH + λ(r − rH).

� σλ(r) = σ(rλ), mλ(r) = m(rλ), φλ(r) = φ(rλ)

Virial identity - Scalar field, BH spacetime

∫ ∞

0
drσr2

[(
1 +

2rH
r

(m
r
− 1
))

φ′2 +

(
3− 2rH

r

)
U(φ)

]
= 0

Both coefficients still positive ⇒ Theorem still holds!

13



Contents

Introduction

Derrick’s method

Virial identity in General Relativity

The Gibbons-Hawking-York term

Summary and Implications

14



An inconsistency - the total derivative term

Consider a functional f [σ(r),m(r), r ] such that

S ′eff = Seff +

∫
dr

d

dr
f [σ(r),m(r), r ]

� The equations of motion for S ′ and S are the same.

� However the Virial identities are not

δSλeff

δλ

∣∣∣∣
λ=1

+

[
δ

δλ
f [σλ(r),mλ(r), λr ]

∣∣∣∣
λ=1

]∞
0

= 0

What is the correct surface term that we should take into account?

15
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Another inconsistency - the ansatz

� Heusler-Straumann approach does not work for other ansatze.

ds2 = −σ2(r)N(r)dt2 +
dr2

N(r)
+ r2dΩ2

� (σ,N) as parametrising functions

� Ignoring total derivative terms VTd , still results in a

contribution from the gravitational term VR

� VR does not vanish for Schwarzschild spacetime

� Total derivative (surface) term VTd is required.
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The Gibbons-Hawking-York (GHY) term

S =
1

16π

∫
M
d4x
√
−gR +

1

8π

∫
∂M

d3x
√
−γ(K − K0)

� γµν - 3-metric of the boundary ∂M

� K - Extrinsic curvature of ∂M

� K0 - Extrinsic curvature of ∂M imbedded in flat spacetime

� Necessary term to have a well posed variational principle in

a manifold M with a boundary ∂M

� We have three gravitational Virial contributions

VR + VTd + VGHY︸ ︷︷ ︸
Surface terms︸ ︷︷ ︸

Gravitational contribution

+ Vm︸︷︷︸
Matter

= 0
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a manifold M with a boundary ∂M

� We have three gravitational Virial contributions

VR + VTd + VGHY︸ ︷︷ ︸
Surface terms︸ ︷︷ ︸

Gravitational contribution

+ Vm︸︷︷︸
Matter

= 0
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GHY Virial contribution

VGHY = 2

[
δ

δλ

(√
−γλ(Kλ − K0λ)

)∣∣∣∣
λ=1

]
∂M

� Along with the total derivative contribution VTd , it removes

the second derivative terms from the action.
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GHY contribution for the (σ,m) ansatz

For the (σ,m) ansatz

VS = VGHY + VTd = 4σ

(
1− r −m√

r(r − 2m)

)
(r − rH)

� Vanishes for most solutions! ⇒ reason why the H-S approach

works

� Other ansatze can have non-vanishing VS
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The (σ,N) ansatz

ds2 = −σ2(r)N(r)dt2 +
dr2

N(r)
+ r2dΩ2

� σ and N parametrising functions.

� VGHY = 0 for Schwarzschild spacetime ⇒ requires only the

VR and VTd terms

⇒ VR + VTd = 0
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The necessity of the GHY term - Reissner-Nordström space-

time

What about Reissner-Nordström spacetime in the (σ,N) ansatz?

Lm = −1

4
FµνF

µν ⇒ VEM = 0

� All gravitational contributions are non-vanishing

⇒ VR + VTd + VGHY = 0

� This shows how both the total derivative term VTd and the

GHY contribution VGHY are necessary.
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Summary and Implications

� We realized that the GHY term is essential to the complete

and correct derivation of the Virial identity.

� This more complete derivation allows us to consider other

different ansatze.

� Allows the calculation of virial identities for other kinds of

symmetries and higher dimensional effective actions, like

stationary and axisymmetric spacetimes.

� All this and more in a future companion paper.

To be continued...
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Thank You!
arXiv:2109.05027 [gr-qc]
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Einstein-Hilbert integrand

√
−g

sin θ
R = 2σ

(
1− rN ′ − N

)
− d

dr

(
2r2σ′N + r2σN ′)

= 4σm′ + 2
d

dr

[
rσ′(2m − r) + σ(m′r −m)

]
GHY integrand

√
−γ

sin θ
(K − K0) =

r2

2
σN ′ + 2rσ(N −

√
N) + r2σ′N

= rσ′(r − 2m)− σ

(
m′r + 2r

√
1− 2m

r
− 2r + 3m

)
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Virial - vacuum GR (σ − N) ansatz

2

∫ ∞

rH

σ
[
N − 1 + (r − rH)N ′] dr =

[
4σ(N −

√
N)(r − rH)

]+∞

rH

Virial - vacuum GR (σ,m) ansatz[
− 4σ

(
r −m√
r2 − 2mr

− 1

)
(r − rH)

]+∞

rH

= 0
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