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Introduction: Black Hole mimicker
e With all the new observational EHT like evidences, one question arises:
is the shadow really an evidence for a BH?

e Typically, the shadow is associated with the LR and illumination source
(accretion disk)

e LRs have been shown to be a generic feature of stationary BHs

e And to have an important impact on the ringdown and shadow

e Can a dynamically robust, horizonless object mimick a BH image?
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Introduction: Boson Stars

e A Boson Star is an hypothetical astronomical object formed out of bosons

e For this stars to exist, one needs a stable boson
e Compact Boson Stars are often studied involving massive complex scalar fields
with U(1) global symmetry

e They may be described as an everywhere regular lump of scalar or vector
boson
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Introduction: Boson Stars

e Boson Stars have been proposed as candidate dark matter objects
e Inthat case, they would interact very weakly with electromagnetic radiation

e However, the immense gravity of a compact BS would be able to bend light
and even create an accretion disk

blackholecam.org/



https://blackholecam.org/research/bhshadow/astromod/
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If the source of light in the vicinity of the BS has the same morphology as it
would have around a BH, the observational image could be similar

e A key feature is the cut-off in the emission due to the disk’s inner edge

Which is determined by the innermost stable circular orbit (ISCO) of the BH

e However, for spherical BSs there is no ISCO
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e Recent developments in general relativistic magnetohydrodynamic simulations

e Show that the angular velocity of the orbits, ), attains a maximum at some
areal radius Rq

e Inthis work, it was suggested that R , determines the inner edge of the
accretion disk
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Black Hole mimicker

e Recent developments in general relativistic magnetohydrodynamic simulations

e Show that the angular velocity of the orbits, (), attains a maximum at some
areal radius Rq

e Inthis work, it was suggested that R , determines the inner edge of the
accretion disk

e BSs are then possible BH mimickers

e The objective of this work is to assess if stable and dynamically robust BS can
yield the same shadow as a BH.
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The model: Lagrangean

e The Einstein-matter action, where the matter part describes a spin-s=0, 1
classical field minimally coupled to Einstein’s gravity

4
S=[dz/— [16 =
For the scalar fields @:s=0

Ly = _%gaﬂ ((T),aq),ﬂ + (i),ﬂq),a) - U,L-(|<I>|2) ;

For the vector fields A:s=1

L1 = —%Faﬁﬁaﬁ — V(A2)
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The model: Ansatz

e For the metric ansatz

ds® = —No?dt? + &= 4+ 12402 N(r) =1 - 220

For the scalar fields @:s=0
®(r,t) = p(r)e ™"

For the vector fields A:s=1

A= [f(r)dt i g(r)dr|e ™
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The model:

e The self-interaction potentials

Upoly = p49? + A®* 4 ®°
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Numerical Procedure:

e The, in house developed, integrator consists on a parallelized adaptive step
(5)6-0 Runge-Kutta method




Light Rings
and
Timelike Circular Orbits
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e The radial geodesic equation for a particle around a BS,

where E and [ represent the particle’s energy and angular momentum
e For null (timelike) geodesics k=0 (k=—1)

e Foracircularorbit,7=0=7r
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Geodesic motion: Light Rings k=0

e Let us first consider null geodesics (k = 0)

—TU(_zm’ +i—’;")+2( —@) (c—rd’) =0.

rrb

e LRs always come in pairs: one stable and one unstable ¢unha & Herdeiro, PRL 2020
e We wish to find the first BS solution containing a LR

e In other words, the first ultracompact BS
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e Let us now consider timelike geodesics (k=-1)

e The angular velocity €2 along these orbits is

Q=,/5vVoN +2No'.

e As already mentioned, BS do not have an ISCO
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e However an accretion disk may have an inner edge even around BSs without
an ISCO Olivares et al., MN of the RAS 2020
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Geodesic motion: Keeping up

Does it provide a similar scale, for a BS and a Schw. BH?

Moving along the spiral, the ADM mass and frequency undergo oscillations

The field amplitude at the origin, on the other hand, grows monotonically

To uniquely label the solutions, let us introduce

fo(z)

#ol2) scalar| or x(z) = 0L [vector] ,
0 max

X(CE) = 00 (Mrmax)
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Boson Stars: Polynomial Scalar

e This analysis and the one in the previous subsection, suggest that a
simultaneous increase

e To test this hypothesis: A =100 and y=1000
° X(é:trans) =1.51

o However R, is still fairly below the ISCO radius of the comparable BH:

e« & =509

min

Upoly = p5®* + A@* + y@°
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Conclusion

e Models with dynamically robust spherical BSs, can mimic the shadow of a
Schwarzschild BH

e In the case of spherically stable scalar BSs:
e While polynomial self-interaction cannot easily solve this issue;

e The Axionic model may be able

e On the other hand, for spherical PSs

e We found that the simplest model, can indeed mimic a Schwarzschild BH
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Conclusion

o Despite the matching between R, and the ISCO of the BH
e The lensing analysis reveals slightly different shadows

e Since R, varies from a large value down to zero

e A precise shadow degeneracy will be achieved

e Our lensing analysis reveals the degeneracy only holds in certain conditions
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e Can adynamically robust, horizonless object mimick a BH image?
Yes

But only under certain observational conditions
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Thank You!
Obrigado!
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