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● With all the new observational EHT like evidences, one question arises:            
is the shadow really an evidence for a BH?

● Typically, the shadow is associated with the LR and illumination source 
(accretion disk)

● LRs have been shown to be a generic feature of stationary BHs

● And to have an important impact on the ringdown and shadow
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● With all the new observational EHT like evidences, one question arises:            
is the shadow really an evidence for a BH?

● Typically, the shadow is associated with the LR and illumination source 
(accretion disk)

● LRs have been shown to be a generic feature of stationary BHs 

● And to have an important impact on the ringdown and shadow

● Can a dynamically robust, horizonless object mimick a BH image?
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● However, the immense gravity of a compact BS would be able to bend light  
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● Which is determined by the innermost stable circular orbit (ISCO) of the BH
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Black Hole mimicker 
● Recent developments in general relativistic magnetohydrodynamic simulations

● Show that the angular velocity of the orbits, Ω, attains a maximum at some 
areal radius RΩ

● In this work, it was suggested that RΩ determines the inner edge of the 
accretion disk

● BSs are then possible BH mimickers

● The objective of this work is to assess if stable and dynamically robust BS can 
yield the same shadow as a BH.
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● The, in house developed, integrator consists on a parallelized adaptive step 
(5)6-O Runge-Kutta method

 

Numerical Procedure: Integrator  
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● The radial geodesic equation for a particle around a BS,

where E and l represent the particle’s energy and angular momentum 

● For null (timelike) geodesics k = 0 (k = −1)

● For a circular orbit, ṙ = 0 = r̈ 
 

Geodesic motion  



● Let us first consider null geodesics (k = 0)

 

Geodesic motion: Light Rings k
 
=

 
0  



● Let us first consider null geodesics (k = 0)

● LRs always come in pairs: one stable and one unstable Cunha & Herdeiro, PRL 2020

● We wish to find the first BS solution containing a LR

● In other words, the first ultracompact BS

 

Geodesic motion: Light Rings k = 0  



● Let us first consider null geodesics (k = 0)

● LRs always come in pairs: one stable and one unstable Cunha & Herdeiro, PRL 2020

● We wish to find the first BS solution containing a LR

● In other words, the first ultracompact BS

 

Geodesic motion: Light Rings k
 
=

 
0  



● Let us first consider null geodesics (k = 0)

● LRs always come in pairs: one stable and one unstable Cunha & Herdeiro, PRL 2020

● We wish to find the first BS solution containing a LR

● In other words, the first ultracompact BS

 

Geodesic motion: Light Rings k
 
=

 
0  



● Let us now consider timelike geodesics (k = -1)

● The angular velocity Ω along these orbits is
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● However an accretion disk may have an inner edge even around BSs without 
an ISCO Olivares et al. ,  MN of the RAS 2020

● This occurs if the angular velocity along TCOs attains a maximum at some 
radial distance. The corresponding areal radius is denoted RΩ
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● Does it provide a similar scale, for a BS and a Schw. BH?

● Moving along the spiral, the ADM mass and frequency undergo oscillations

● The field amplitude at the origin, on the other hand, grows monotonically 

● To uniquely label the solutions, let us introduce
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● Models with dynamically robust spherical BSs, can mimic the shadow of a 
Schwarzschild BH

● In the case of spherically stable scalar BSs:

● While polynomial self-interaction cannot easily solve this issue;

● The Axionic model may be able

● On the other hand, for spherical PSs

● We found that the simplest model, can indeed mimic a Schwarzschild BH
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Thank You!

Obrigado!
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