Loop decay in Abelian-Higgs string networks Phys.Rev.D 104 (2021) 4, 043519 EREP 2021 September 14, 2021

Ander Urio

In collaboration with:

Mark Hindmarsh Joanes Lizarraga Jon Urrestilla

Universidad Euskal Herriko del País Vasco Unibertsitatea FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

Cosmic strings

- Cosmic strings → one type of topological defect.
- Created in the phase transitions of the early universe.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

► Abelian Higgs model → simplest gauge field theory with string-like solutions:

$$\mathcal{L} = D_{\mu}\phi^* D^{\mu}\phi + V(\phi) + \frac{1}{4e^2}F_{\mu\nu}F^{\mu\nu} ,$$

with Mexican-hat potential:

$$V(\phi) = \frac{\lambda}{4} (|\phi|^2 - \phi_0^2)^2 .$$

State of the art and motivation

- Two main models that describe the evolution of cosmic strings:
 - Nambu-Goto (NG) \rightarrow strings idealised one-dimensional objects.
 - Field theory (FT) \rightarrow considers the discretized version of the full equations of motion. Simulations in 3D cubic lattices.

Models do not agree on the evolution of cosmic string loops:

- NG loops \rightarrow oscillatory/slow decay typically via gravitational radiation.
- FT loops \rightarrow rapid decay typically via gauge/scalar radiation.

Loops in field theory

Not so exhaustively studied as in NG.

Preliminary works on loops from networks Hindmarsh, Stuckey, Bevis (Phys.Rev.D 79 (2009) 123504)

 Length decrease linearly with time

• Lifetime $\propto \ell_{\rm init}$.

Recent work on artificially set loops: Matsunami, Pogosian, Saurabh and Vachaspati (Phys.Rev.Lett. 122 (2019) 20, 201301)

- Boosted straight strings
- Long living loops
- Lifetime $\propto \ell_{\text{init}}^2$.

(日)

Abelian-Higgs strings in field theory

- We have evolved the discretised version of the Abelian-Higgs EOM (Minkowski spacetime), using a cubic lattice (different N, δx) with periodic boundary conditions.
- Two types of initial conditions:
- Loops from intersections of infinite strings in networks.

• Loops from artificially set up configurations.

Set up of the string network simulations

String networks

- Only the scalar field is non-zero. It is set to be a stationary Gaussian random field with a power spectrum that depends on the correlation length l_{\u03c6}.
- Excess of energy produced by the random initial conditions removed by a diffusive phase.
- Afterwards the string network evolves following the discretised AH equations of motion with $\delta t = (1/5)\delta x$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Possible outputs from string networks

- Due to the topology of the lattice (torus), simulations can end up in:
 - Strings that wrap the box (purple).
 - Collapsing loops (green and blue).
- ► In total we have performed 98 simulations: only ~ 1/3 of them from intersections.

Procedure

- Observable: total string length in the box: $\ell_{\mathcal{L}}$.
- Follow the evolution of $\ell_{\mathcal{L}}$.
- Compute the initial length (ℓ_{L,init}) and lifetime (t_{life}) of the loops.

Decay of network loops

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Decay of network loops

- Independent of the loop size and l_φ loops are clustered around a constant value → t_{life} = αℓ_{L,init}.
- ▶ Different from t_{life} ∝ ℓ²_{L,init} obtained by Matsunami et al. 2019.

- Blue $\rightarrow N = 1024, \delta x = 0.125.$
- Red $\to N = 1024, \delta x = 0.25.$
- Green $\rightarrow N = 2048, \delta x = 0.25.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Set up and analysis of the artificial loops

Artificial loops

- Initial conditions:
 - Static configuration → leads to the formation of 2 loops.
 - 2 strings with kinks + 2 standing waves.
- Diffusion also applied.
- Resolution $\delta x = 0.125$ and N = 768, 1024, 1280, 1536.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Decay of artificial loops

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Decay of artificial loops

- ► We computed ℓ_{L,init} and t_{life} of the 8 different inner loops obtained.
- Fitting the results obtained to $t_{\text{life}} = \alpha \ell_{\mathcal{L},\text{init}}^{\beta}$:
 - $A = 0.1L \rightarrow \beta = 2.22 \pm 0.06.$
 - $A = 0.075L \rightarrow \beta = 2.16 \pm 0.05.$
- Artificial loops decay ∝ ℓ²_{init} while network loops ∝ ℓ_{init}.

Conclusions

- ▶ Possibility of $\propto \ell_{init}^2$ for artificial loops, but network loops $\propto \ell_{init}$.
- ▶ Bad luck? From 31 network loops sample $\rightarrow f_{\rm NG} < 0.1$ at 95% confidence level.
- ▶ We have also computed the average velocity: Network loops $\rightarrow \bar{v}^2 = 0.40 \pm 0.04$ Artificial loops $\rightarrow \bar{v}^2 = 0.500 \pm 0.004$ NG in Minkowski $\rightarrow \bar{v}^2 = 0.5$
- Further investigation needed to understand loop decay.

Loop decay in Abelian-Higgs string networks Phys.Rev.D 104 (2021) 4, 043519 EREP 2021 September 14, 2021

Ander Urio

In collaboration with:

Mark Hindmarsh Joanes Lizarraga Jon Urrestilla

Universidad Euskal Herriko del País Vasco Unibertsitatea FACULTY OF SCIENCE AND TECHNOLOGY UNIVERSITY OF THE BASQUE COUNTRY

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ● ●

- * ロ * * 個 * * ヨ * * ヨ * - ヨ - のへで