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Lewis metrics

Describe generically the exterior gravitational field produced by infinitely
long cylinders

ds2 = —fdt® + 2kdtdg + r" D/?(dr + dz2) + Idg?
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Two classes:
P Lewis class (complex parameters)
> Weyl class (all parameters real)

» static cylinders (Levi-Civita metric)
» rotating cylinders



Lewis metrics

Describe generically the exterior gravitational field produced by infinitely
long cylinders
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Two classes:
P Lewis class (complex parameters)

> Weyl class (all parameters real)

» static cylinders (Levi-Civita metric)
» rotating cylinders

Field of static and rotating cylinders of the Weyl class
P both locally static; locally indistinguishable
P but known to globally differ (matching to the source)

> significance was unclear (physical and geometrical)
» in which physical effects the rotation imprints itself?



Gravitomagnetism

Stationary spacetime: ds®> = —e>®(dt — A;dx')? + hjdx’ dx/

= spatial metric (Einstein’s light signaling procedure)

vyy

hij
® = “gravitoelectric” potential;
A

= “gravitomagnetic” vector potential;

Spatial components of exact geodesic equation:

bu S j .
bu_ vy ['yG + U x H] (analogous to Lorentz force bU_g [’yE + U x B])
dr dr m

» G = —Vo = gravitoelectric field;
> H=e"V x A = gravitomagnetic field;
» V¥ = Levi-Civita connection of h;

» DU'/dr = dU'/dT + T (h)j U/ U
(covariant derivative with respect to hj)




Gravitomagnetism

Stationary spacetime: ds®> = —e?®(dt — A;dx')? + h;dx’dx/

(® = "gravitoelectric” potential; A= “gravitomagnetic’ potential
hij = spatial metric)

: dS 1. -
» Gyroscope precession: ==-SxH 7
dr 2 n
P> H=e"V x A = gravitomagnetic field; —
P analogous to precession of magnetic / . .
d|p0|e (Dg/dT = ﬁ X B) / * . ~~.\di5.ta‘m>star
Pt R -
bp® Ba 1
» Force on gyroscope: e —H"*Sg
T

» H.s = *Raps, U U” = gravitomagnetic tidal tensor

P analogous to force on magnetic dipole DP/dT = B®®pgs;
Bog = xFau,s U" = magnetic tidal tensor

| 2 H,’j = —% [ﬁjH,’ —+ (G Fi)hU — QG}H,']



Levels of Magnetism

Field

—

A
(magnetic
v. potential)

Physical effect

e Aharonov

-Bohm effect
(quantum theory)

Levels of Gravitomagnetism

Field
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(gravitomag.
v. potential)

Physical effect

e Sagnac effect

e part of GM
clock effect

e magnetic force

e gravitomag. force

qu x B m'ylj x H
B e dipole precess. H ® gyroscope precess.
(V x A) DS . = (e®V x A) dS = =~
=2 22 15w H
ar M xB dr 25 X
e magnetic e part of GM
clock effect clock effect
e Force on e Force on
Bag mag. dipole Hop gyroscope
(~ 0i0;Ax) Dp* _ BBaMB (~ 0;0;Ax) Dp® _ _HBaSB
dr dr




EM field of infinitely long rotating charged cylinder

@ = —2XIn(r)  (Electric potential)
A= ?26‘1’ (Magnetic vector potential)

A =md¢ (Magnetic potential 1-form;
constant components in coord. basis)

E=-Vp= ?& (Electric field)

B=VxA=0 (Magnetic field)

» Same ¢, E and B = 0 as for a static
cylinder

> only differ in A (= 0 for static cylinder)
P classically, curl-free Ais gauge; physics depend only on E and B

P field of static and rotating cylinders indistinguishable classically



Aharonov-Bohm effect

Beam of electrons split and passing around a rotating charged cylinder
(avoiding it)

Electron

beam .7k

Beam
splitter

Interference
region

> A induces a phase shift in_electron’s wave function
(p=q/hfcA=q/h [ A-d])

2
P Phase difference between the two paths Ay = %55 A= LqA(z,

c h



Lewis metrics — Weyl class

ds® = —fdt? + 2kdtde + r" /2 (dr® 4 dz%) + ld¢?
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» & complicated

> A= A,dg; A, complicated

> H+#0, Hayp #0

P all unlike EM analogue in inertial rest frame
>

resembles EM analogue in a rotating frame
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Lewis metrics — Weyl class

ds® = —fdt? + 2kdtde + r" /2 (dr® 4 dz%) + ld¢?

2 n+1 2 n+1
foat™ - k=—Cf; I=_-Cf Cc="—+b
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» & complicated

> A= A,dp; A, complicated

> H+#0, Hayp #0

P all unlike EM analogue in inertial rest frame

P resembles EM analogue in a rotating frame

» 0, ceases to be time-like for r2" > a?n?/c?

= no observers at rest are possible past that r
» resembles a rigidly rotating frame in flat spacetime

P could the metric, as usually given in the literature, be actually
written in a rotating coordinate system?



Lewis metrics — Weyl class

From the invariants of the Riemann (= Weyl) tensor

1 2
RagnaR™0 = (n® — 12(3+ n?)r 37"
» quadratic
*Rapys R0 =0
ap o _ 3.5 —3(n?+3)/2
R )\/LR/\NpURpaB - _T6( - 1)4r (n"+3)/
» cubic
af o _
R MR’\“M *Rp(w =0

we know it is a purely “electric’ Petrov type | spacetime

P at each point, an observer exists measuring
Haog = *Raup, UHUY =0

=0



Lewis metrics — “canonical” form of Weyl class

Observers measuring H,s = 0 have 4-velocity U~ = U*(d¢' + Q63), with
constant angular velocity
Cc

Q= be O Q= 7% (redundancy in original parameters)

P Rigid observer congruence!

» Transformation ¢ = ¢ — Qt, at constant , yields a coordinate
system where they are at rest; redefining parameters:

r4)\m

. 2
d52 _ - dt — ; 11/4 d¢_> +r4)‘m(2)‘m71)(dr2 + dzz)+ar2(172)‘m)dq_52




Lewis metrics — “canonical” form of Weyl class

Observers measuring H,s = 0 have 4-velocity U~ = U*(d¢' + Q63), with
constant angular velocity
Cc

Q= be O Q= 7% (redundancy in original parameters)

P Rigid observer congruence!

» Transformation ¢ = ¢ — Qt, at constant , yields a coordinate
system where they are at rest; redefining parameters:

4Xm : 12 B
ds® = — r dt — X J 1/4 dé| + r4)\m(2)\m71)(dr2 + dzz)+ar2(172)‘m)d¢2
« m —

P Only 3 parameters (originally 4), with clear physical meaning

» )\, = Komar mass per unit z— length
» j = Komar angular momentum per unit z— length

P « governs the angle deficit



Lewis metrics — “canonical” form of Weyl class
ds? = —e?®(dt — Azdd)? + hyjdx’dx/

1 J
20 L 4xg, o
¢ = A= "1

h,, = h,, = r(n"—1)/2 hsg = ar21—2Xm)

b =2\nIn(r)+ K (gravitoelectric potential)

G=-9;,= 7&5{ (gravitoelectric field)
;

A = Aydp; Aj constant (gravitomagnetic potential 1-form)

H = e®eé™9; Ak =0 (gravitomagnetic field)

Exactly mirrors electromagnetic analogue
> & and G; match exactly ¢ and E;, identifying A\, <> — A

» Hand H, s vanish (like B = B.s =0)
> A, like A, is azimuthal and irrotational (i.e., closed form, d.A = 0)



Lewis metrics — “canonical” form of Weyl class
ds? = —e2®(dt — A;dd)? + hydx'dx/

1 J
20 _ 2 4 o
€ 704 A¢ Am — 1/4

h, = h,, = r(""=1)/2 hss = ar2i=2)

& =2\nIn(r)+ K (gravitoelectric potential)
2Am o . L
G=-0,;,= ——(5 (gravitoelectric field)
A = Asdp; Az constant (gravitomagnetic potential 1-form)

H = e®c™*9; Ak = 0 (gravitomagnetic field)

The Killing vector 9; is time-like everywhere
P observers at rest possible everywhere
G "25° 0 = frame asymptotically inertial

» frame fixed to the “distant stars”



Lewis metrics — “canonical” form of Weyl class
ds? = —e2®(dt — A;dd)? + hydx'dx/

1 J
20 _ 2 4 o
€ 704 A¢ Am — 1/4

h, = h,, = r(""=1)/2 hss = ar2i=2)

& =2\nIn(r)+ K (gravitoelectric potential)
2Am o . L
G=-0,;,= ——(5 (gravitoelectric field)
A = Asdp; Az constant (gravitomagnetic potential 1-form)

H = e®c™*9; Ak = 0 (gravitomagnetic field)

The Killing vector 9; is time-like everywhere

> observers at rest possible everywhere » canonical form
of the Weyl class

6 r—o00 =
Lewis metric

0 = frame asymptotically inertial
P frame fixed to the “distant stars”




“Canonical” form of Weyl class — notable limits

A . 2

ds® = — " dt — X i 1/ do +r4A“’(2Am_1)(dr2 +d22)+ar2(1_2)‘m)dq_52

» A\, — 0 = spinning cosmic string:

1 - -
ds” = —= [dt + 4jd3)* + dr* + dz* + ar?d?

» j — 0 = static Levi-Civita cylinder:

g
ds? — _ra dtz+r4,\m(2/\m71)(dr2_i_dzz)_’_arz(kzxm)dq;z



“Canonical” form of Weyl class vs Levi-Civita
ds? = —e?®(dt — Azdd)? + hyjdx’dx/

1 J
20 _ 1 AAm o
e r ./4¢ 7)\“‘71/4

(0%

& =2\nIn(r) + K (gravitoelectric potential)
2Am o . L
G=-9,= —fé,- (gravitoelectric field)
A = Asdp; Az constant (gravitomagnetic potential 1-form)

H = e®c™ 9 A = 0 (gravitomagnetic field)

b, @, I-7 hij, match those of the static Levi-Civita cylinder
P all inertial and tidal fields/forces are the same

Only differ in LA (= 0 for static cylinder)

P Again, like in electromagnetic analogue, with A



Sagnac effect

Light beams propagating in opposite directions along optical fiber loop

Loop attached to a rotating platform (turntable) in flat spacetime

P Take different times to complete the loop; co-rotating beam takes
longer

P co-rotating beam undergoes a longer path, because arrival point is
“running away” from the beam during the trip

P counter-rotating one undergoes a shorter path, as arrival point is
approaching it during the trip.

Measures the apparatus’ absolute rotation with respect to inertial frame



Sagnac effect

Light beams propagating in opposite directions along optical fiber loops

-

Distant star

Loops fixed with respect to the distant stars, and placed close to a
spinning body
P Again beams take different times to complete the loop
= now assigned to frame-dragging
In both cases: ds? = —e2®(dt — A,d$)? + hjdx'dx/
> difference in arrival times: At =2¢. A =2¢, Aidx’



Sagnac effect around cylinder of the Weyl class

Loops at rest in star fixed (“canonical”) coordinates

Distant star

> At=2¢. A=2¢. Aidx’

> dA=0 & VxA=0
(closed form)

By Stokes theorem:
> At =0 for any loop not enclosing the cylinder
> At = 4rA, the same for all loops enclosing the cylinder



Sagnac effect around cylinder of the Weyl class

Loops at rest in star fixed (“canonical”) coordinates
Distant star

> At=2¢. A=2¢. Aidx’

~

E’ > dA=0 & VxA=0
N % (closed form)
By Stokes theorem:

> At =0 for any loop not enclosing the cylinder
> At = 4rA, the same for all loops enclosing the cylinder
» Mirrors the Aharonov-Bohm effect around spinning charged cylinders
» dA=0 = Ay =q/h$.A=2mq/hA, path-independent
P Sagnac phase difference: Ag = 27E/hA, (formally analogous)



Sagnac effect around cylinder of the Weyl class

Distinction can be made without use
of a specific frame

P but not with a single loop

P Sagnac effect in a loop can be
made to vanish by spinning it

Effect vanishes in circular loops with zero angular momentum

» those rotating with angular velocity

-1

j 1/4 — Ay B
Qzamo(r) = _&og _ _ [ J Y o2 r21-42m)

g¢¢> 1/4 - >\m _/

(r- dependent!)



Sagnac effect around cylinder of the Weyl class

Coil of optical fiber loops

P In static (Levi-Civita) cylinder, Sagnac effect can be made to vanish

simultaneously in every loop
(namely, when the coil is at rest relative to distant stars)



Sagnac effect around cylinder of the Weyl class

Coil of optical fiber loops

Sagnac effect —_4
in all loops

P In static (Levi-Civita) cylinder, Sagnac effect can be made to vanish

simultaneously in every loop
(namely, when the coil is at rest relative to distant stars)

P In rotating cylinder, and coil fixed to the distant stars, Sagnac effect
arises in every loop



Sagnac effect around cylinder of the Weyl class

Coil of optical fiber loops

Sagnac effect —_ 4
inallloops

|
\
\ Only one loop without
Sagnaceffect >

P In static (Levi-Civita) cylinder, Sagnac effect can be made to vanish

simultaneously in every loop
(namely, when the coil is at rest relative to distant stars)

P In rotating cylinder, and coil fixed to the distant stars, Sagnac effect
arises in every loop

P Spinning the coil with angular velocity Qzamo(ro) makes the effect

vanish at a loop of radius ry;
» but on all other loops a Sagnac effect will arise



Gravitomagnetic clock effect

Around a spinning body, the periods
of co- and counter-rotating
geodesics differs:

VhH?
Atgeo = 47TA¢ +27Tw 5

Sagnac

Atge, consists of two terms
> one equaling the Sagnac time delay 47 Ay

P plus one due to the gravitomagnetic force 70 x H

P repulsive (attractive) for co-(counter) rotating geodesics
P analogous to magnetic force produced by spinning body



Gravitomagnetic clock effect

Around a spinning body, the periods
of co- and counter-rotating
geodesics differs:

VhH?
Atgeo = 47TA¢ +27Tw ,
Sagnac

Atge, consists of two terms
> one equaling the Sagnac time delay 47 Ay

P plus one due to the gravitomagnetic force 7(7 x H

P repulsive (attractive) for co-(counter) rotating geodesics
P analogous to magnetic force produced by spinning body

For Weyl class cylinder in star fixed frame, H=0
P Aty reduces to Sagnac time delay

» What was said about beams in optical loops, applies as well to pairs
of particles in circular geodesics



Gravitomagnetic clock effect

Possible to distinguish field of static from rotating cylinders using only
one pair of clocks in oppositely rotating geodesics

= ./ /

» around a static cylinder, both clocks measure the same proper time
between the events where they meet

P around a rotating cylinder, proper times differ when they meet



Local vs global staticity

Distinction between fields of static and Weyl class rotating cylinders is
archetype of the contrast between globally static, and locally but
non-globally static spacetimes

» Staticity: time-like killing vector field £ exists such that £, = 10, ¢
(i.e., & is proportional to the gradient of a smooth function 1))

P Jocally: amounts to £ being hypersurface orthogonal (vorticity-free)
» satisfied by both static and rotating Weyl class cylinders

P globally, vorticity-free condition not sufficient



Local vs global staticity

Distinction between fields of static and Weyl class rotating cylinders is
archetype of the contrast between globally static, and locally but
non-globally static spacetimes

» Staticity: time-like killing vector field £ exists such that £, = 10, ¢
(i.e., & is proportional to the gradient of a smooth function 1))

P Jocally: amounts to £ being hypersurface orthogonal (vorticity-free)
» satisfied by both static and rotating Weyl class cylinders
P globally, vorticity-free condition not sufficient
» Local staticity: a coordinate system exists such that the metric takes
the stationary form ds? = —e*®(dt — A;dx')? 4 h;dx’dx/
with A = A;dx’ a closed form, d. A =0

> Global staticity: .A is moreover exact
(= A= Aydp =0, in axistationary case)
P field of static cylinder (Levi-Civita metric) is globally static
P field of rotating Weyl class cylinder is locally but non-globally static



P A spacetime is locally static iff it admits a hypersurface orthogonal
Killing vector £

P it is moreover globally static iff such hypersurfaces intersect each
integral line of £% only once (i.e., are of global simultaneity)

t Static cylinder

P Levi-Civita static cylinder: hypersurfaces

orthogonal to 0; are the planes t = const
= globally static




P A spacetime is locally static iff it admits a hypersurface orthogonal
Killing vector £

P it is moreover globally static iff such hypersurfaces intersect each
integral line of £% only once (i.e., are of global simultaneity)

Static cylinder Rotating cylinder

(Weyl class)

LSRR
“’
e S mmu ey

r ‘ I
Weyl class rotating cylinder (in canonical form): hypersurfaces
orthogonal to 0; are the helicoids t — Ay¢ = const.

P not hypersurface of global simultaneity
(each 27 turn along ¢ lands on a different event in time; gap = 2w.A4y)

P Killing observers unable to synchronize clocks around the cylinder



Conclusion

» We have shown that the Lewis metric of the Weyl class can be put
in a “canonical” form, corresponding to a system of coordinates
fixed to the “distant stars”

» depends only on 3 parameters: the Komar mass and angular
momentum per unit length, plus the angle deficit

» striking similarities with electromagnetic analogue

» has smooth matching with Van Stockum’s interior solution in
star-fixed coordinates

» allows for a transparent comparison with the Levi-Civita field
of a static cylinder

P established their distinction in terms of the physical effects
(gravitomagnetic effects) that detect the rotation

» seen to differ only in the gravitomagnetic potential 1-form A

» manifest in the Sagnac and gravitomagnetic clock effects, and
in the synchronization of clocks

P archetype of local vs global staticity: local staticity amounts to
closure of A, global staticity to its exactness



