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Lewis metrics

Describe generically the exterior gravitational �eld produced by in�nitely
long cylinders

ds2 = −fdt2 + 2kdtdϕ+ r (n
2−1)/2(dr2 + dz2) + ldϕ2

f = ar1−n − c2rn+1

n2a
; k = −Cf ; l =

r2

f
− C 2f ; C =

crn+1

naf
+ b

Two classes:

▶ Lewis class (complex parameters)

▶ Weyl class (all parameters real)

▶ static cylinders (Levi-Civita metric)
▶ rotating cylinders

Field of static and rotating cylinders of the Weyl class

▶ both locally static; locally indistinguishable

▶ but known to globally di�er (matching to the source)

▶ signi�cance was unclear (physical and geometrical)
▶ in which physical e�ects the rotation imprints itself?
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Gravitomagnetism

Stationary spacetime: ds2 = −e2Φ(dt −Aidx
i )2 + hijdx

idx j

▶ hij ≡ spatial metric (Einstein's light signaling procedure)

▶ Φ ≡ �gravitoelectric� potential;

▶ A⃗ ≡ �gravitomagnetic� vector potential;

Spatial components of exact geodesic equation:

D̃U⃗

dτ
= γ

[
γG⃗ + U⃗ × H⃗

]
(analogous to Lorentz force

DU⃗

dτ
=

q

m

[
γE⃗ + U⃗ × B⃗

]
)

▶ G⃗ = −∇̃Φ ≡ gravitoelectric �eld;

▶ H⃗ = eΦ∇̃ × A⃗ ≡ gravitomagnetic �eld;

▶ ∇̃ ≡ Levi-Civita connection of hij

▶ D̃U i/dτ = dU i/dτ + Γ(h)ijkU
jUk

(covariant derivative with respect to hij)

U

U x HH

G



Gravitomagnetism

Stationary spacetime: ds2 = −e2Φ(dt −Aidx
i )2 + hijdx

idx j

(Φ ≡ �gravitoelectric� potential; A⃗ ≡ �gravitomagnetic� potential
hij ≡ spatial metric)

▶ Gyroscope precession:
dS⃗

dτ
=

1

2
S⃗ × H⃗

▶ H⃗ = eΦ∇̃ × A⃗ ≡ gravitomagnetic �eld;

▶ analogous to precession of magnetic

dipole (DS⃗/dτ = µ⃗× B⃗)

▶ Force on gyroscope:
DPα

dτ
= −HβαSβ

distant star
S ey

e

ez

x

H

▶ Hαβ = ⋆RαµβνU
µUν ≡ gravitomagnetic tidal tensor

▶ analogous to force on magnetic dipole DPα/dτ = Bβαµβ ;

Bαβ = ⋆Fαµ;βU
µ ≡ magnetic tidal tensor

▶ Hij = − 1

2

[
∇̃jHi + (G⃗ · H⃗)hij − 2GjHi

]



Levels of Magnetism Levels of Gravitomagnetism

Field Physical e�ect Field Physical e�ect

A⃗

(magnetic

v. potential)

• Aharonov

-Bohm e�ect

(quantum theory)

A⃗
(gravitomag.

v. potential)

• Sagnac e�ect

• part of GM

clock e�ect

B⃗

(∇× A⃗)

• magnetic force

qU⃗ × B⃗

• dipole precess.

DS⃗

dτ
= µ⃗× B⃗

• magnetic
clock e�ect

H⃗

(eΦ∇× A⃗)

• gravitomag. force

mγU⃗ × H⃗

• gyroscope precess.

dS⃗

dτ
= 1

2
S⃗ × H⃗

• part of GM
clock e�ect

Bαβ

(∼ ∂i∂jAk )

• Force on

mag. dipole

DPα

dτ
= Bβαµβ

Hαβ

(∼ ∂i∂jAk )

• Force on

gyroscope

DPα

dτ
= −HβαSβ



EM �eld of in�nitely long rotating charged cylinder

φ = −2λ ln(r) (Electric potential)

A⃗ =
m

r2
∂ϕ (Magnetic vector potential)

A = mdϕ (Magnetic potential 1-form;
constant components in coord. basis)

E⃗ = −∇φ =
2λ

r
∂r (Electric �eld)

B⃗ = ∇× A⃗ = 0 (Magnetic �eld)

▶ Same φ, E⃗ and B⃗ = 0 as for a static
cylinder

▶ only di�er in A⃗ (= 0 for static cylinder)

A

B = 0

▶ classically, curl-free A⃗ is gauge; physics depend only on E⃗ and B⃗

▶ �eld of static and rotating cylinders indistinguishable classically



Aharonov-Bohm e�ect

Beam of electrons split and passing around a rotating charged cylinder
(avoiding it)

A
Electron
beam

Interference
regionBeam 

splitter

▶ A⃗ induces a phase shift in electron's wave function
(φ = q/ℏ

�
C
A ≡ q/ℏ

�
C
A⃗ · dl⃗)

▶ Phase di�erence between the two paths ∆φ =
q

ℏ

�
C

A =
2πq

ℏ
Aϕ



Lewis metrics � Weyl class

ds2 = −fdt2 + 2kdtdϕ+ r (n
2−1)/2(dr2 + dz2) + ldϕ2

f = ar1−n − c2rn+1

n2a
; k = −Cf ; l =

r2

f
− C 2f ; C =

crn+1

naf
+ b

▶ Φ complicated

▶ A = Aϕdϕ; Aϕ complicated

▶ H⃗ ̸= 0, Hαβ ̸= 0

▶ all unlike EM analogue in inertial rest frame

▶ resembles EM analogue in a rotating frame

▶ ∂t ceases to be time-like for r2n > a2n2/c2

⇒ no observers at rest are possible past that r
▶ resembles a rigidly rotating frame in �at spacetime

▶ could the metric, as usually given in the literature, be actually
written in a rotating coordinate system?
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Lewis metrics � Weyl class

From the invariants of the Riemann (= Weyl) tensor

▶ quadratic


RαβγδR

αβγδ =
1

4
(n2 − 1)2(3+ n2)r−3−n2 = 0

⋆RαβγδR
αβγδ = 0

▶ cubic


Rαβ

λµR
λµ

ρσR
ρσ
αβ = − 3

16
(n2 − 1)4r−3(n2+3)/2

Rαβ
λµR

λµ
ρσ ⋆R

ρσ
αβ = 0

we know it is a purely �electric� Petrov type I spacetime

▶ at each point, an observer exists measuring

Hαβ ≡ ⋆RαµβνU
µUν = 0



Lewis metrics � �canonical� form of Weyl class

Observers measuring Hαβ = 0 have 4-velocity Uα = U t(δαt +Ωδαϕ ), with
constant angular velocity

Ω =
c

n − bc
or Ω = − 1

b
(redundancy in original parameters)

▶ Rigid observer congruence!

▶ Transformation ϕ̄ = ϕ− Ωt, at constant Ω, yields a coordinate
system where they are at rest; rede�ning parameters:

ds2 = − r4λm

α

[
dt − j

λm − 1/4
d ϕ̄

]
2

+ r4λm(2λm−1)(dr2 + dz2)+αr2(1−2λm)d ϕ̄2

▶ Only 3 parameters (originally 4), with clear physical meaning

▶ λm ≡ Komar mass per unit z− length

▶ j ≡ Komar angular momentum per unit z− length

▶ α governs the angle de�cit
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Lewis metrics � �canonical� form of Weyl class

ds2 = −e2Φ(dt −Aϕ̄d ϕ̄)
2 + hijdx

idx j

e2Φ =
1

α
r4λm Aϕ̄ =

j

λm − 1/4

hrr = hzz = r (n
2−1)/2 hϕ̄ϕ̄ = αr2(1−2λm)

Φ = 2λm ln(r) + K (gravitoelectric potential)

Gi = −Φ,i = −2λm
r

δri (gravitoelectric �eld)

A = Aϕdϕ; Aϕ̄ constant (gravitomagnetic potential 1-form)

H i = eΦϵijk∂jAk = 0 (gravitomagnetic �eld)

Exactly mirrors electromagnetic analogue

▶ Φ and Gi match exactly φ and Ei , identifying λm ↔ −λ
▶ H⃗ and Hαβ vanish (like B⃗ = Bαβ = 0)

▶ A, like A, is azimuthal and irrotational (i.e., closed form, dA = 0)



Lewis metrics � �canonical� form of Weyl class

ds2 = −e2Φ(dt −Aϕ̄d ϕ̄)
2 + hijdx

idx j

e2Φ =
1

α
r4λm Aϕ̄ =

j

λm − 1/4

hrr = hzz = r (n
2−1)/2 hϕ̄ϕ̄ = αr2(1−2λm)

Φ = 2λm ln(r) + K (gravitoelectric potential)

Gi = −Φ,i = −2λm
r

δri (gravitoelectric �eld)

A = Aϕdϕ; Aϕ̄ constant (gravitomagnetic potential 1-form)

H i = eΦϵijk∂jAk = 0 (gravitomagnetic �eld)

The Killing vector ∂t is time-like everywhere

▶ observers at rest possible everywhere

G⃗
r→∞→ 0⃗ ⇒ frame asymptotically inertial

▶ frame �xed to the �distant stars�



Lewis metrics � �canonical� form of Weyl class

ds2 = −e2Φ(dt −Aϕ̄d ϕ̄)
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idx j
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j
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▶ observers at rest possible everywhere
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▶ frame �xed to the �distant stars�

▶ canonical form
of the Weyl class
Lewis metric



�Canonical� form of Weyl class � notable limits

ds2 = − r4λm

α

[
dt − j

λm − 1/4
d ϕ̄

]
2

+ r4λm(2λm−1)(dr2+dz2)+αr2(1−2λm)d ϕ̄2

▶ λm → 0 ⇒ spinning cosmic string:

ds2 = − 1

α

[
dt + 4jd ϕ̄

]2
+ dr2 + dz2 + αr2d ϕ̄2

▶ j → 0 ⇒ static Levi-Civita cylinder:

ds2 = − r4λm

α
dt2 + r4λm(2λm−1)(dr2 + dz2) + αr2(1−2λm)d ϕ̄2



�Canonical� form of Weyl class vs Levi-Civita

ds2 = −e2Φ(dt −Aϕ̄d ϕ̄)
2 + hijdx

idx j

e2Φ =
1

α
r4λm Aϕ̄ =

j

λm − 1/4

Φ = 2λm ln(r) + K (gravitoelectric potential)

Gi = −Φ,i = −2λm
r

δri (gravitoelectric �eld)

A = Aϕdϕ; Aϕ̄ constant (gravitomagnetic potential 1-form)

H i = eΦϵijk∂jAk = 0 (gravitomagnetic �eld)

Φ, G⃗ , H⃗, hij , match those of the static Levi-Civita cylinder

▶ all inertial and tidal �elds/forces are the same

Only di�er in A (= 0 for static cylinder)

▶ Again, like in electromagnetic analogue, with A



Sagnac e�ect

Light beams propagating in opposite directions along optical �ber loop

c∆
t

Loop attached to a rotating platform (turntable) in �at spacetime

▶ Take di�erent times to complete the loop; co-rotating beam takes
longer

▶ co-rotating beam undergoes a longer path, because arrival point is
�running away� from the beam during the trip

▶ counter-rotating one undergoes a shorter path, as arrival point is
approaching it during the trip.

Measures the apparatus' absolute rotation with respect to inertial frame



Sagnac e�ect

Light beams propagating in opposite directions along optical �ber loops

c∆
t

c∆
t

Distant star

Loops �xed with respect to the distant stars, and placed close to a
spinning body

▶ Again beams take di�erent times to complete the loop

⇒ now assigned to frame-dragging

In both cases: ds2 = −e2Φ(dt −Aϕdϕ)
2 + hijdx

idx j

▶ di�erence in arrival times: ∆t = 2
�
C
A ≡ 2

�
C
Aidx

i



Sagnac e�ect around cylinder of the Weyl class
Loops at rest in star �xed (�canonical�) coordinates

c∆
t

∆t=0

Distant star

▶ ∆t = 2
�
C
A ≡ 2

�
C
Aidx

i

▶ dA = 0 ⇔ ∇× A⃗ = 0
(closed form)

By Stokes theorem:

▶ ∆t = 0 for any loop not enclosing the cylinder

▶ ∆t = 4πAϕ the same for all loops enclosing the cylinder

▶ Mirrors the Aharonov-Bohm e�ect around spinning charged cylinders

▶ dA = 0 =⇒ ∆φ = q/ℏ
�
C
A = 2πq/ℏAϕ path-independent

▶ Sagnac phase di�erence: ∆φ = 2πE/ℏAϕ (formally analogous)
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Sagnac e�ect around cylinder of the Weyl class

s

∆t=0

Ω      
ZAMO

Distinction can be made without use
of a speci�c frame

▶ but not with a single loop

▶ Sagnac e�ect in a loop can be
made to vanish by spinning it

E�ect vanishes in circular loops with zero angular momentum

▶ those rotating with angular velocity

ΩZAMO(r) = − g0ϕ
gϕϕ

= −
[

j

1/4− λm
− 1/4− λm

j
α2r2(1−4λm)

]−1

(r - dependent!)



Sagnac e�ect around cylinder of the Weyl class

Coil of optical �ber loops

No Sagnac e�ect

(a)

▶ In static (Levi-Civita) cylinder, Sagnac e�ect can be made to vanish

simultaneously in every loop
(namely, when the coil is at rest relative to distant stars)



Sagnac e�ect around cylinder of the Weyl class

Coil of optical �ber loops

Sagnac e�ect
 in all loops

No Sagnac e�ect

(a) (b)

▶ In static (Levi-Civita) cylinder, Sagnac e�ect can be made to vanish

simultaneously in every loop
(namely, when the coil is at rest relative to distant stars)

▶ In rotating cylinder, and coil �xed to the distant stars, Sagnac e�ect
arises in every loop



Sagnac e�ect around cylinder of the Weyl class

Coil of optical �ber loops

Sagnac e�ect
 in all loops

Only one loop without
 Sagnac e�ect

No Sagnac e�ect

(a)

r 0

Ω      (r
0 )

ZAMO

(b) (c)

▶ In static (Levi-Civita) cylinder, Sagnac e�ect can be made to vanish

simultaneously in every loop
(namely, when the coil is at rest relative to distant stars)

▶ In rotating cylinder, and coil �xed to the distant stars, Sagnac e�ect
arises in every loop

▶ Spinning the coil with angular velocity ΩZAMO(r0) makes the e�ect

vanish at a loop of radius r0;
▶ but on all other loops a Sagnac e�ect will arise



Gravitomagnetic clock e�ect

Around a spinning body, the periods
of co- and counter-rotating
geodesics di�ers:

∆tgeo = 4πAϕ︸ ︷︷ ︸
Sagnac

+2π

√
hHz

GreΦ
,

∆tgeo consists of two terms

▶ one equaling the Sagnac time delay 4πAϕ

▶ plus one due to the gravitomagnetic force γU⃗ × H⃗
▶ repulsive (attractive) for co-(counter) rotating geodesics
▶ analogous to magnetic force produced by spinning body

For Weyl class cylinder in star �xed frame, H⃗ = 0

▶ ∆tgeo reduces to Sagnac time delay

▶ What was said about beams in optical loops, applies as well to pairs
of particles in circular geodesics
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Gravitomagnetic clock e�ect

Possible to distinguish �eld of static from rotating cylinders using only
one pair of clocks in oppositely rotating geodesics

τ  = τ+ −

τ  = τ  = 0+ − τ  = τ  = 0+ −

τ  = τ+ −

▶ around a static cylinder, both clocks measure the same proper time
between the events where they meet

▶ around a rotating cylinder, proper times di�er when they meet



Local vs global staticity

Distinction between �elds of static and Weyl class rotating cylinders is
archetype of the contrast between globally static, and locally but

non-globally static spacetimes

▶ Staticity: time-like killing vector �eld ξα exists such that ξα = η∂αψ
(i.e., ξα is proportional to the gradient of a smooth function ψ)

▶ locally: amounts to ξα being hypersurface orthogonal (vorticity-free)

▶ satis�ed by both static and rotating Weyl class cylinders

▶ globally, vorticity-free condition not su�cient

▶ Local staticity: a coordinate system exists such that the metric takes
the stationary form ds2 = −e2Φ(dt −Aidx

i )2 + hijdx
idx j

with A ≡ Aidx
i a closed form, dA = 0

▶ Global staticity: A is moreover exact

(⇒ A = Aϕdϕ = 0, in axistationary case)

▶ �eld of static cylinder (Levi-Civita metric) is globally static

▶ �eld of rotating Weyl class cylinder is locally but non-globally static
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▶ A spacetime is locally static i� it admits a hypersurface orthogonal
Killing vector ξα

▶ it is moreover globally static i� such hypersurfaces intersect each
integral line of ξα only once (i.e., are of global simultaneity)

∂t

φ
r

t Static cylinder

▶ Levi-Civita static cylinder: hypersurfaces

orthogonal to ∂t are the planes t = const
⇒ globally static



▶ A spacetime is locally static i� it admits a hypersurface orthogonal
Killing vector ξα

▶ it is moreover globally static i� such hypersurfaces intersect each
integral line of ξα only once (i.e., are of global simultaneity)

∂t
∂t

2πA φ

P2

P1

Rotating cylinder 
    (Weyl class)

φ
r

t  Static cylinder

Weyl class rotating cylinder (in canonical form): hypersurfaces
orthogonal to ∂t are the helicoids t −Aϕϕ = const.

▶ not hypersurface of global simultaneity
(each 2π turn along ϕ lands on a di�erent event in time; gap = 2πAϕ)

▶ Killing observers unable to synchronize clocks around the cylinder



Conclusion
▶ We have shown that the Lewis metric of the Weyl class can be put

in a �canonical� form, corresponding to a system of coordinates
�xed to the �distant stars�
▶ depends only on 3 parameters: the Komar mass and angular

momentum per unit length, plus the angle de�cit
▶ striking similarities with electromagnetic analogue
▶ has smooth matching with Van Stockum's interior solution in

star-�xed coordinates
▶ allows for a transparent comparison with the Levi-Civita �eld

of a static cylinder

▶ established their distinction in terms of the physical e�ects
(gravitomagnetic e�ects) that detect the rotation
▶ seen to di�er only in the gravitomagnetic potential 1-form A
▶ manifest in the Sagnac and gravitomagnetic clock e�ects, and

in the synchronization of clocks

▶ archetype of local vs global staticity: local staticity amounts to
closure of A, global staticity to its exactness


