Geometric Justification of the Fundamental Interaction Fields for the Classical Long-Range Forces

Symmetry 2021, 13(3), 379; https://doi.org/10.3390/sym13030379 [arxiv:1907.05248]

Vesselin G. Gueorguiev

Ronin Institute & Institute for Advanced Physical Studies

Andre Maeder

Geneva Observatory, University of Geneva, Switzerland

EREP2021-Spanish-Portuguese Relativity Meeting 13-16 September 2021, Aveiro, Portugal

Relativistic Particle

$$L_1(x,v) = \sqrt{g_{\mu\nu}v^{\mu}v^{\nu}}, L_2(x,v) = g_{\mu\nu}v^{\mu}v^{\nu}$$

Real particles propagate with a **finite 3D speed**, **constant 4D speed**, and the corresponding Euler-Lagrange equations of motion are **equivalent** to the geodesic equations.

$$S[x(\tau)] = \int_{A}^{B} L(x, v) d\lambda$$

 $\mathrm{d}\tau = L_I(x, v) d\lambda$

$$\left(\frac{\delta S_1[x(\tau)]}{\delta x(\tau)} = 0\right) \cong \left(\frac{\delta S_2[x(\tau)]}{\delta x(\tau)} = 0\right) \cong \left(D_{\vec{v}}\vec{v} = 0\right)$$

In proper time parameterization L=1 or 0 $g_{\mu\nu}v^{\mu}v^{\nu} = const$

Should the smallest "distance" be the guiding principle? If yes, how it should be defined in other situations?

Reparametrization Invariance

Leaving aside expectation that the spacetime is quantized ... we ask:

- > Should there be any preferred trajectory parameterization in the 4D spacetime?
- \triangleright Aren't we free to choose the <u>standard of distance</u> (time)? (Using natural units c=1)

Smallest time interval ?!... no more events under certain threshold?

$$\phi: R^{1} \to M$$

$$\phi^{*}: R^{1} \to TM$$

$$\phi_{*}: R^{1} \leftarrow T^{*}M$$

$$\frac{d}{d\tau} \left(\frac{\partial L}{\partial v^{\alpha}}\right) = \frac{\partial L}{\partial x^{\alpha}}$$

Integrating using a *Volume* form is natural. Consider the pull-back of a one-form ω : $\phi_*(\omega) = A_\alpha(x) v^\alpha d\tau = L(x,v) d\tau$, this is first order homogeneous Lagrangian.

If L(x,v) is homogeneous function of v then the Euler-Lagrange equations are invariant under τ -rescaling, $L(x,v) \sim H$ is constant.

What is the general mathematical expression for homogeneous function of first order?

$$f(\vec{v}) = \sum_{i} v^{i} \frac{\partial}{\partial v^{i}} f(\vec{v})$$

Is there a unique procedure to extract A, g, S ... from L:

$$L(x,v) = A_{\alpha}(x)v^{\alpha} + \sqrt{g_{\mu\nu}(x)v^{\mu}v^{\nu}} + ... + \sqrt[n]{S(v,v,...,v)} + ...$$

First Order Homogeneous Lagrangians

Cons

$$L = \sum_{\alpha} v^{\alpha} \frac{\partial L}{\partial v^{\alpha}}$$

- Constraints among the Euler-Lagrange equations
 - $(x,v) \rightarrow (x,p)$ problem
 - ➤ The Hamiltonian function is ZERO
- Some researchers do not like it...

$$H = v^{\alpha} p_{\alpha} - L, p_{\alpha} = \frac{\partial L}{\partial v^{\alpha}}$$

Canonical form:

Pros

- ➤ Reparametrization invariance
- Parameterization independent pathintegral quantization
- May help in dealing with singularities
- Any $L(x,v) \rightarrow L(x,v/v_0)v_0$ a reparametrization invariant one.
- Easily generalized to p-branes

$$L(x,v) = qA_{\alpha}(x)v^{\alpha} + m\sqrt{g_{\mu\nu}(x)v^{\mu}v^{\nu}} + \dots + \varepsilon\sqrt[n]{S(v,v,\dots,v)} + \dots$$

Coordinate time parameterization c=1: $L(x,v) = qA_0(x) + q\vec{A} \cdot \vec{v} + m\sqrt{1 - \vec{v} \cdot \vec{v}} + ...$

Important Lagrangians

► 0-brane (<u>point particle</u>): $ω^{\Gamma} \rightarrow \frac{dx^{\alpha}}{d\tau} = v^{\alpha}$,

$$L(x,\omega) = A_{\Gamma}(x)\omega^{\Gamma} + \sqrt{g_{\Gamma\Lambda}(x)\omega^{\Gamma}\omega^{\Lambda}} \rightarrow L(x,v) = eA_{\alpha}(x)v^{\alpha} + m\sqrt{g_{\mu\nu}(x)v^{\mu}v^{\nu}}$$

► 1-brane (<u>strings</u>): $ω^{\Gamma} \to Y^{\alpha\beta} = \frac{\partial (x^{\alpha}, x^{\beta})}{\partial (\tau, \sigma)}$,

$$\mathbf{Y}^{\alpha\beta} = \det \begin{pmatrix} \partial_{\tau} X^{\alpha} & \partial_{\sigma} X^{\alpha} \\ \partial_{\tau} X^{\beta} & \partial_{\sigma} X^{\beta} \end{pmatrix} = \partial_{\tau} X^{\alpha} \partial_{\sigma} X^{\beta} - \partial_{\sigma} X^{\alpha} \partial_{\tau} X^{\beta},$$

String theory Lagrangian: $L(x^{\alpha}, \partial_i x^{\beta}) = \sqrt{Y^{\alpha\beta} Y_{\alpha\beta}}$

> p-brane: *Dirac-Nambu-Goto Lagrangian*: $L(x^{\alpha}, \partial_D x^{\beta}) = \sqrt{Y^{\Gamma} Y_{\Gamma}}$

One Time Physics, Causality, and m>0

Assume that the gravity like term is always present:

$$m\sqrt{g_{\alpha\beta}(x)v^{\alpha}v^{\beta}}$$

$$g_{\alpha\beta}v^{\alpha}v^{\beta} \ge 0$$

Positivity guarantees well defined proper time! Thus, causality!

Select a local coordinate system where g is (+...+,-...-), call the (+) coordinates time coordinates and the (-) space coordinates.

Cases:

1. No time coordinates.

$$g_{\alpha\beta}v^{\alpha}v^{\beta} = -\sum_{i} (v^{i})^{2} \le 0$$

 $g_{\alpha\beta}v^{\alpha}v^{\beta} = (V)^2 + (v^0)^2 - \sum_i (v^i)^2,$

 $\implies V^2 + 1 \ge \vec{v}^2$

2. Two and more time coordinates.

$$g_{\alpha\beta} v^{\alpha} v^{\beta} = (v^{0})^{2} - \sum_{i} (v^{i})^{2} \rightarrow 1 - \vec{v}^{2} \Rightarrow 1 \ge \vec{v}^{2}$$

m>0, Minkowski signature, and Common Arrow of time! (m>0 <=> |φ|>0 [*])

[*] Reparametrization Invariance and Some of the Key Properties of Physical Systems V G. Gueorguiev and A. Maeder in Symmetry 2021, 13, 522. (10.3390/sym13030522) [ArXiV:1903.02483]

Key New Results & Concepts

- Un-proper time parametrization as source of extra forces/accelerations.
- Pathological behavior in S_n interactions for n>2.
- Resolving **ambiguities for the interaction fields** using the <u>canonical form of *L*</u>.

Equivalent Lagrangians

$$v^{i} \frac{\partial L(x, \vec{v})}{\partial v^{i}} = nL(x, \vec{v}), \quad h = pv - L \rightarrow h = (n-1)L$$

$$L \to f(L), \quad \frac{d}{d\tau} \left(\frac{\partial L}{\partial v} \right) = \frac{\partial L}{\partial x} \to \frac{d}{d\tau} \left(f' \frac{\partial L}{\partial v} \right) = f' \frac{\partial L}{\partial x}$$

$$\frac{f''}{f'} \left(\frac{\partial L}{\partial v}\right) \frac{dL}{d\tau} + \frac{d}{d\tau} \left(\frac{\partial L}{\partial v}\right) = \frac{\partial L}{\partial x}$$

Fictitious forces/accelerations in un-proper time parametrization

$$\frac{dp_{\mu}}{dt} = \partial_{\mu}L - \frac{f''}{f'}\dot{L}p_{\mu}, \ p_{\mu} = \frac{\partial L}{\partial v^{\mu}} \quad \Rightarrow \ \frac{dp_{\mu}}{dt} = \partial_{\mu}L + \frac{\dot{L}}{2L}p_{\mu}, \ \text{when } f(L) = \sqrt{L}.$$

$$rac{dv_\mu}{dt}=\partial_\mu L+\kappa_0 v_\mu$$
, when $L=g_{\mu
u}v^\mu v^
u$. for $L=\lambda^{-2}L_{_{GR}}$ and $k_{_0}=-d\lambda/(\lambda dt)$.

Pathology of S_n interactions for n > 2

$$L = (S_n(v))^{1/n}$$
 parametrization gauge $S_n(v) = const$

$$S_n(r, w, u) = \psi(r)w^n + \phi(r)u^n$$
. where $w = dx^0/d\tau$ and $u = dr/d\tau$

$$\frac{du}{d\tau} = -\frac{u^2\phi'(r)}{(n-1)\phi(r)} + \frac{1}{u^{n-2}} \frac{w^n\psi'(r)}{n(n-1)\phi(r)},$$

$$\frac{dw}{d\tau} = -\frac{wu\psi'(r)}{(n-1)\psi(r)}.$$

For n>2, using u/w=v/c and dividing by w^2 , one see a **pathology at v \rightarrow 0** (no co-moving rest frame):

$$\frac{(n-1)}{w^2}\frac{du}{d\tau} = -\frac{v^2\phi'(r)}{c^2\phi(r)} + \frac{c^{n-2}}{v^{n-2}}\frac{\psi'(r)}{h\phi(r)}.$$
DM QM & Inflation

Summary

✓ First order homogeneous *matter Lagrangians* in <u>canonical form</u> naturally contain *electromagnetic and gravitational* interactions.

$$A_{\mu}(x) = \frac{1}{2} (\tilde{L}(x,v) - \tilde{L}(x,-v))_{/\mu} \Big|_{v=(1,\overrightarrow{0})} \qquad L = v^{\mu} A_{\mu}(x) + \sqrt{g_{\alpha\beta} v^{\alpha} v^{\beta}}$$

$$g_{\alpha\beta}(x) = \frac{1}{4} (\tilde{L}(x,v) + \tilde{L}(x,-v))_{/\alpha/\beta}^2 \Big|_{v=(1,\overrightarrow{0})}$$

The framework predicts fictitious forces/accelerations and specific new interactions beyond the *electromagnetic and* gravitational interactions! $\frac{(n-1)}{w^2} \frac{du}{d\tau} = -\frac{v^2 \phi'(r)}{c^2 \phi(r)} + \frac{c^{n-2}}{v^{n-2}} \frac{\psi'(r)}{n \phi(r)}.$

$$\frac{dv_{\mu}}{dt} = \partial_{\mu}L + \kappa_0 v_{\mu}$$
, when $L = g_{\mu\nu}v^{\mu}v^{\nu}$.

On the Canonical Form of the First Order Homogeneous Lagrangians

$$L(x,v) = \frac{h_{\alpha\beta}(x)v^{\alpha}v^{\beta}}{\sqrt{g_{\mu\nu}(x)v^{\mu}v^{\nu}}},$$

Both fields (g and h)have same type of matter sources ~vv.

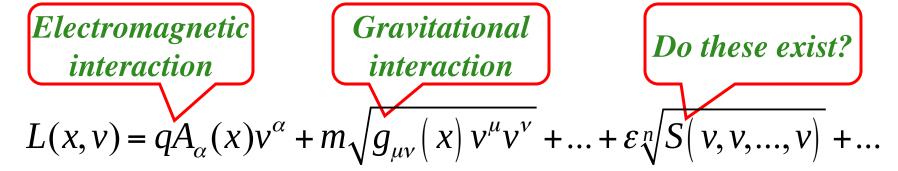
$$\frac{\delta L(x,v)}{\delta h_{\mu\nu}} = \frac{L(x,v)}{\left(h_{\alpha\beta}(x)v^{\alpha}v^{\beta}\right)}v^{\mu}v^{\nu}, \quad \frac{\delta L(x,v)}{\delta g_{\mu\nu}} = \frac{L(x,v)}{\left(g_{\alpha\beta}(x)v^{\alpha}v^{\beta}\right)}v^{\mu}v^{\nu}.$$

The canonical form defines fields for each source type vvv...v.

$$L(x,v) = qA_{\alpha}(x)v^{\alpha} + m\sqrt{g_{\mu\nu}(x)v^{\mu}v^{\nu}} + \dots + \varepsilon\sqrt[n]{S(v,v,\dots,v)} + \dots$$

Background Interaction Fields

Matter should provide the sources for the interaction fields!



Constructing Lagrangians for the interaction fields.

- The "never ending process": Consider each background field (S_n) as M-brane theory since $S_n: M \rightarrow S_n M$.
- External algebra method: (A-type fields)
 Constructing external n-forms proportional to the volume form using external derivatives and the Hodge dual operation: $A_{\Lambda}*A$ and $dA_{\Lambda}*dA$.
- Gauge symmetry method: Use the Euler-Lagrange equations or their integral (geodesic) deviation.

Field Lagrangians

$$\vec{a} = \hat{F} \vec{v}, \hat{F} = dA + [A, A]$$

$$\vec{a} = \vec{v} \cdot \Gamma \cdot \vec{v}, \ \Gamma \rightarrow \Gamma + \partial \Lambda$$

$$\frac{d}{d\tau} \frac{d}{d\tau} \vec{\xi} = \hat{\mathbf{R}} \vec{\xi}, \ \hat{\mathbf{R}} = d\Gamma + [\Gamma, \Gamma]$$

 $A \land *A \text{ does not obey the symmetries of the matter equations,}$ when $F \land F = d(A \land F)$ is a boundary term...(Q - Hall effect) $L(A, \partial A) = \int_{M} F \land *F$

R is a special curvature two-form with values in Lie(TM).

$$R_{ij,kl} = -R_{ij,lk} = -R_{lk,ij} = R_{kl,ij}, \quad R^* = R_{ij,*(jk)}, \quad R^{\land} = R_{i[j,k]l}$$
 ? (4D)

Einstein-Cartan action:
$$L(g, \partial g) = \int_{M} \hat{R}_{\alpha\beta} \wedge *(dx^{\alpha} \wedge dx^{\beta})$$

Summary

- ✓ First order homogeneous *matter Lagrangians* in <u>canonical form</u> naturally contain *electromagnetic and gravitational* interactions.
- ✓ Gravitational term with Minkowski signature and positive mass is needed to assure well-defined proper time and causality; thus, common arrow of time.
- ✓ Unique construction of *Lagrangians for the interaction fields*.
- ✓ The framework predicts specific new interactions beyond the *electromagnetic and gravitational* interactions!