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Introduction
I The recent discovery of the accelerated rate of cosmic expansion has inspired a

wave of new research into the nature of gravitational physics
X New alternatives and/or generalisations to Einstein’s General Relativity (GR) theory

abound already
I In order to understand the dynamics of nonlinear fluid flows, it is important to

understand the relationship between their Newtonian and general relativistic
limits
X Relevant both in the physics of gravitational collapse and the late (nonlinear) stages of

cosmic structure formation
I The differential properties of time-like geodesics describe the fluid flows in

cosmology
X The expansion Θ, shear (distortion) σαβ , rotation (vorticity) ωα, and acceleration Aa

of the four-velocity field ua tangent to the fluid flowlines describe kinematics of such
fluid flows

I Important to make a consistency analysis of the field equations for different
models where integrability conditions arise from imposing external restrictions

I The introduction of integrability conditions in CG-dominated universes helps us
explore the existence and nature of these universe models that would otherwise
not exist under the standard matter (dust) conditions

I Here we explore general properties of classes of shear-free spacetimes
characterised by the vanishing of shear σαβ , but generally non-vanishing energy
density µ , vorticity ωα and a locally free gravitational field covariantly described
by the gravito-electric (GE) and gravito-magnetic (GM) components of the Weyl
tensor, Eαβ and Hαβ , respectively
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Covariant description

I The standard GR gravitational action with a matter field contribution to the
Lagrangian, Lm , is given by1

A = 1
2

∫
d4x
√
−g [R + 2Lm]

I Using the variational principle of least action with respect to the metric gab , the
generalised Einstein Field Equations (EFEs) can be given in a compact form as

Gαβ = Tαβ

with the first (geometric) term represented by the Einstein tensor, and
energy-momentum tensor of matter fluid forms given by

Tαβ = µuαuβ + phαβ + qαuβ + qβuα + παβ

X µ, p, qa and παβ are the energy density, isotropic pressure, heat flux and anisotropic
pressure of the fluid, respectively

X uα ≡ dxα
dt is the 4-velocity of fundamental observers comoving with the fluid and is

used to define the covariant time derivative for any tensor Sα..βγ..δ along an
observer’s worldlines:

Ṡα..βγ..δ = uλ∇λSα..βγ..δ

1We have used 8πG = 1 = c
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Covariant description...
I The projection tensor into the tangent 3-spaces orthogonal to uα is given by

hαβ ≡ gαβ + uαuβ and is used to define the fully orthogonally projected
covariant derivative for any tensor Sα..βγ..δ:

∇̃λSα..βγ..δ = hαµhνγ ...hβθhφδhτ λ∇τSµ..θν..φ

with total projection on all the free indices
I The orthogonally projected symmetric trace-free (PSTF) part of vectors and

rank-2 tensors is defined as

V 〈α〉 = hαβV β S〈αβ〉 =
[
h(α

γhβ)
δ − 1

3hαβhγδ
]

Sγδ

and the volume element for the rest spaces orthogonal to uα is given by

εαβγ = uδηδαβγ = −
√
|g |δ0[α δ

1
βδ

2
γδ

3
δ]uδ

where ηabcd is the 4-dimensional volume element with the properties

ηαβγδ = η[αβγδ] = 2εαβ[γuδ] − 2u[αεβ]γδ

I Covariant spatial divergence and curl of vectors and rank-2 tensors:

divV = ∇̃αVα (divS)α = ∇̃βSαβ
curlVα = εαβγ∇̃βV γ curlSαβ = εγδ(α∇̃γSβ)

δ
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Covariant description...

I The first covariant derivative of uα can be split into its irreducible parts as

∇αuβ = −Aαuβ + 1
3Θhαβ + σαβ + εαβγω

γ

Aα ≡ u̇α Θ ≡ ∇̃αuα σαβ ≡ ∇̃〈αuβ〉 ωα ≡ εαβγ∇̃βuγ

I The Weyl conformal curvature tensor Cαβγδ is defined as

Cαβγδ = Rαβγδ − 2g [α
[γRβ]

δ] +
R
3

g [α
[γgβ]

δ]

and can be split into its “electric” and “magnetic” parts, respectively, as

Eαβ ≡ Cαγβδuγuδ

Hαβ ≡ 1
2ηαθ

γδCγδβλuθuλ

X Eαβ represents the free gravitational field (tidal forces)
X Hαβ is responsible for gravitational waves, no Newtonian analogue

I Cosmological quantities that vanish in the background spacetime are considered
to be first-order and gauge-invariant by virtue of the Stewart-Walker lemma
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Chaplygin gas cosmology

I The Chaplygin gas is a dark-fluid model whose EoS

p = −
A
µ

A=const

allows for a solution of the form:

µ(a) =

√
A +

B
a6

X Early universe: µ ∼ a−3, behaves as dust (dark matter and baryonic matter)
X Late universe: µ ∼

√
A, behaves like dark energy

I Widely explored model for a unified description of the cosmological background
expansion history

I Not so-widely explored at the perturbations level
I Consistency relations that might constrain the model?
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Linearized field equations

I In a multi-component fluid universe filled with standard matter fields (dust,
radiation, etc) and Chaplygin-gas contributions, the total energy density, isotropic
and anisotropic pressures and heat flux are given, respectively, by

µ ≡
∑

i

µi p ≡
∑

i

pi qα ≡
∑

i

qi
α παβ ≡

∑
i

πi
αβ

with the index i labelling the thermodynamic property of the ith fluid
I If we assume the late time matter distribution to be dominated by dust and the

CG, then we can write:

µ = µd + µc p = pc qα = qd
α + qc

α

where dust is taken to be pressureless and we have further assumed that the
anisotropic pressures identically vanish at linear order: pd = 0 , πd

αβ = 0 = πc
αβ

I Moreover, we assume the normalized 4-velocity uα of fundamental observers
coincides with that of standard matter ud

α such that

v c
α ≡ uc

α − uα qd
α = 0 qc

α = (µc + pc )v c
α

where the normalized 4-velcoity of the Chaplygin fluid is tilted w.r.t to uα by the
peculiar velocity v c

α � 1 (a non-relativistic approximation)
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Linearized field equations...
I The complete linearised propagation and constraint equations are given by:

µ̇d = −µd Θ (1.1)
µ̇c = −(µc + pc )Θ− ∇̃αqc

α (1.2)
Θ̇ = − 1

3Θ2 − 1
2 (µ+ 3pc ) + ∇̃αAα (1.3)

q̇c
α = − 4

3Θqc
α − (µc + pc )Aα − ∇̃αpc (1.4)

ω̇α = − 2
3Θωα − 1

2 εαβγ∇̃
βAγ (1.5)

σ̇αβ = − 2
3Θσαβ − Eαβ + ∇̃〈αAβ〉 (1.6)

Ėαβ = εγδ〈α∇̃γHδβ〉 −ΘEαβ − 1
2 (µ+ p)σαβ − 1

2 ∇̃〈αqc
β〉 (1.7)

Ḣαβ = −ΘHαβ − εγδ〈α∇̃γEδβ〉 (1.8)

(C1)α := ∇̃βσαβ − 2
3 ∇̃αΘ + εαβγ∇̃βωγ + qc

α = 0 (1.9)

(C2)αβ := εγδ(α∇̃γσδβ) + ∇̃〈αωβ〉 − Hαβ = 0 (1.10)

(C3)α := ∇̃βHαβ + (µ+ pc )ωα + 1
2 εαβδ∇̃

βqδc = 0 (1.11)

(C4)α := ∇̃bEαβ − 1
3 ∇̃αµ+ 1

3Θqc
α = 0 (1.12)

(C5) := ∇̃αωα = 0 (1.13)
I Not silent models: spatial derivatives coupled with the evolution equations

X Flowlines on any hypersurface do not evolve separately from each other
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Shear-free spacetimes

I Over the years, the role of shear in GR and the special nature of shear-free cases
in particular have been studied

I Gödel showed 2 that shear-free time-like geodesics of some spatially homogeneous
universes cannot expand and rotate simultaneously and this result was later
generalized34 to include inhomogeneous cases of shear-free time-like geodesics

I An interesting aspect of the shear-free condition is that it does not hold in
Newtonian gravitation theory although Newtonian theory is a limiting case of GR
under special circumstances, namely at low-speed relative motion of matter with
no gravito-magnetic effects (vanishing magnetic part of the Weyl tensor) and
hence no gravitational waves

I Let us now investigate the effect of switching off the shear term from the above
evolution and constraint equations
X A first observation is that Eq. (1.6) turns into a new constraint equation:

(C6)αβ := Eαβ − ∇̃〈αAβ〉 = 0 (2.1)

2Gödel K. Rotating universes in general relativity theory. In Proceedings of the International Congress of
Mathematicians, Cambridge, Mass. 1952, Vol. 1, 175 (1952)

3Ellis, G. Dynamics of pressure-free matter in general relativity. Journal of Mathematical Physics 8, 1171 (1967)
4Nzioki, A. M., Goswami, R., Dunsby, P. K. & Ellis, G. F. Shear-free perturbations of Friedmann-

Lema?̂ire-Robertson-Walker universes
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Shear-free spacetimes...
I The special case where qc

α = 0 where Eq. (1.4) turns into a further constraint

Aα = −
∇̃αpc

µc + pc (2.2)

was recently investigated 5 and shown to have counter-examples to the
generalized Ellis shear-free conjecture
X Simultaneously expanding (Θ 6= 0) and rotating (ωa 6= 0) fluid flow solutions exist in

Chaplygin-gas dominated cosmological models
X These counter-examples force a special algebraic relationship between the defining CG

fluid parameters
X Beyond these counter-examples, any expanding shear-free CG-dominated universe with

vanishing heat flux must generally be non-rotating

I A direct implication of this will be that from Eq. (1.5) another new constraint
emerges:

εαβγ∇̃βAγ = 0 =⇒ Aα = ∇̃αφ (2.3)

i.e., if the curl of the acceleration vector Aα is zero, then Aα an be written as the
grant of some scalar potential φ. Comparing Eqs. (2.2) and (2.3), one concludes

φ = −
1
2

ln
(
µc + pc

µc

)
= −

1
2

ln
(
1−

A
µ2c

)
(2.4)

5Abebe, A., Al Ajmi, M., Elmardi, M., Nandan, H. & Sabah, N. Shear-free conditions of a
Chaplygin-gas-dominated universe. Int. J. Geom. Methods Mod. Phys. 2150192 (2021)
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Quasi-Newtonian solutions

I An even more interesting consequence of the above special case (shear-free,
vanishing heat flux) will be that, by virtue of the constraint equation (1.10), the
gravito-magnetic component of the Weyl tensor identically vanishes, leading to
the so-called quasi-Newtonian universe with a homogeneous expansion, since
∇̃αΘ = 0 in Eq. (1.9)
X Such models are generally unstable to linear perturbations and do not support

large-scale structure formation because

∇̃αΘ = 0 =⇒ ∇̃αµ = 0 =⇒ ∇̃αµd + ∇̃αµc = 0 (2.5)

X This shows that there has to be a fine balance between dust and the CG such that any
tendency for structures to grow out of dust perturbations will be discouraged by those
of the latter

I Let us now consider shear-free models with a net heat-flux due to the CG fluid
I Limit focus to irrotational-fluid cases for now. An immediate consequence of the

irrotational-fluid assumption would be that from Eq. (1.11),

εαβδ∇̃βqδc = 0 =⇒ qc
α = ∇̃αψ (2.6)

for some scalar potential ψ
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Quasi-Newtonian solutions...

I Eq. (1.9) suggests that

qc
α =

2
3
∇̃αΘ =⇒ ψ =

2
3

Θ + C (2.7)

for some (spatial) constant C
I We can then show that the peculiar velocity of the CG fluid (w.r.t the worldline

of the fundamental observers) can be given, either in terms of the expansion
gradient or total energy density gradient, by

v c
α =

2
3(µc + pc )

∇̃αΘ =
1

(µc + pc )Θ
∇̃αµ (2.8)

I And finally, using this result together with Eq. (1.4) the acceleration of the fluid
can be shown to be

Aα = v̇ c
α +
(1
3

+
A
µ2c

)
Θv c

α +
A

µ2c (µc + pc )
∇̃αµc (2.9)

an interesting result that generalizes the quasi-Newtonian relation obtained for
pure dust 6

6Maartens, R. Covariant velocity and density perturbations in quasi-Newtonian cosmologies. Physical Review D
58, 124006 (1998)
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Anti-Newtonian solutions
I These are a class of purely gravito-magnetic irrotational models with

Eαβ = 0 (2.10)

and are considered to be the farthest from the Newtonian theory
I Drawing parallels to the previous subsection in which both the shear and the heat

flux were switched off, one immediate observes that such spacetimes cannot be
shear-free, for if we allow the shear to vanish:
X Hαβ would have to vanish as well
X A vanishing heat flux means

∇̃αΘ = 0 = ∇̃αµ =⇒ FLRW background spacetime (2.11)

I If the heat flux does not vanish, we obtain the same results for the forms of
qc
α , v c

α and Aα with the extra condition that

∇̃〈αqc
β〉 = 0 =⇒ ∇̃〈αv c

β〉 = 0 = ∇̃〈α∇̃β〉µ (2.12)

with the last two equalities holding true to linear order in the perturbations
I In the purely gravito-magnetic sense of the anti-Newtonian models, the vanishing

Eαβ assumption with cosmic shear results in propagation equation (1.7) turning
into a new constraint:

(C7)αβ = εγδ〈α∇̃γHδβ〉 − 1
2 (µ+ p)σαβ − 1

2 ∇̃〈αqc
β〉 (2.13)
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Anti-Newtonian solutions...
I The constraint equation (1.12) leads to the relation

∇̃αµ = Θqc
α (2.14)

which, together with Eq. (1.11) results in the important result

∇̃βHαβ = 0 (2.15)

I Eq. (2.14) shows that qc
α can be written as the gradient of a scalar, and the curl

of the gradient of a scalar is zero for irrotational cases, then the last term in Eq.
(1.11) vanishes

I A necessary condition for the propagation of gravitational radiation is the
vanishing of the divergence of a non-vanishing Hαβ
X Eq. (2.15) therefore shows that gravitational radiation can propagate in a

CG-dominated anti-Newtonian universe. This is the antithesis of a Newtonian solution
where gravitational wave propagation is not allowed

I Referring back to Eq. (1.9), we see that the heat flux for the anti-Newtonian
model is given by

qc
α = 2

3 ∇̃αΘ− ∇̃βσαβ (2.16)

I Comparing this with Eq. (2.14) and using the Friedman constraint Θ2 = 3µ gives
rise to a new constraint on the shear:

∇̃βσαβ = 0 (2.17)

X The solutions for qc
α , v

c
α and Aα that we found in Eqs. (2.7), (2.8) and (2.9) retain

their forms in this subclass of models as well, subject to the constraint (2.13)

13 / 14



Summary

I The CG model as a possible dark fluid alternative
I Shear-free spacetimes

X Quasi-Newtonian solution
X Anti-Newtonian solutions

I Possible new frontiers:
X Analysis of the density and velocity perturbations
X Nonlinear generalizations
X More generalized CG models
X Observational constraints
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