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143 covariant split of spacetime!

» Prefered timelike vector u?, viu, = —1.
Projection operator onto 3-space:
hab = gab + UaUp.
Projection along time: Usp = —u,up

» Covariant "time" derivative:
wa..b = Ucv6¢a...b

» Projected "spatial” derivative:
Dcwa”.b = hghghzvflpde

!G.F.R Ellis and M. Bruni, Phys. Rev. D, 40, 1804 (1989)
G.F.R Ellis and H. van Elst, arXiv:gr-qc/9812046v5
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Covariant Variables 143

» Kinematic quantities of v?: A,, 0, 0,5 and w,p
(acceleration, expansion, shear and vorticity) from

1
Vaup = —uzAp + Dyup = —uzAp + gehab + Wap+0ap
> R.p quantities: u, p, ga, map and A

(energy density, isotropic stress, energy flux, anisotropic stress
and cosmological constant) from

1
Tap = (p+p)Uatip+ Pgab+2q(atip) +Tap = Rap— §Rgab+/\gab

> Weyl tensor: E.p = Cacpquu® and H,p = %nadeCd%Cuc
(Electric and magnetic parts)



1+1+2 covariant split?

» Prefered spacelike vector n® with u?n; = 0. Projection
operator onto perpendicular 2-space with N,, = hyp — nynp.

2C. A. Clarkson & R. Barrett, Class. Quan. Grav. 20, 3855 (2003)
C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)
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1+1+2 covariant split?

> Prefered spacelike vector n® with u?n, = 0. Projection
operator onto perpendicular 2-space with N,, = hyp — nynp.

» Derivative along n?:

Do b= nDetps = nhEhd. hEV by, e

» Derivative perpendicular to n?:

Sctha. b= NENY..NEDgby. o

2C. A. Clarkson & R. Barrett, Class. Quan. Grav. 20, 3855 (2003)
C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)
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Covariant Variables 1+1-+2

» Kinematic quantities of n°: a,, ¢, (ap, & A and a, from
1 )
Danp = nyap + §¢Nab + Cab + 563b7 Ny = Aus + a,

> 142 split:

Vectors: w? = Qn? + Q° etc.

Tensors: o, = X(nanp — %Nab) + 2% (,np) + Lap etc.
> A, wa, Ga, 0ap, Eap, Hap and [, split into

A, Aaa Q, Qaa Qa Qaa 5, 837 gaba H, Ha: Haba |_|, nay I_Iab

respectively
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Field equations, Integrability conditions, commutators

» Einstein's equations: T, = Ry — %Rgab + Agap (So far
general energy-momentum tensor)

Integrability conditons:

» Ricci identities for u? and n?:
Ug:bc — Ua;ch = Rgbcud y  Nabe — Ngieb = Rgbcnd

» Bianchi identities Rapcq.eq) = 0, Raped =0

» Commutators between the differential operators:

"=u'V, "=n°D, and §,.
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141+2 Evolution and propagation equations, constraints

14142 split:
> Evolution equations: ¢ = ... etc
» Propagation equations: gg: ... etc
> Mixture: A—6 = ... etc

» Constraints: 8,07 + €,,0°XP = ... etc
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Homogeneous LRS Il cosmologies with cosmological constant A.

» Locally Rotationally Symmetric (LRS).
LRS II: Hap = wap =& = 0. Also ¢ = 0.
> ds? = —dt® + a2(t)d2 + a3(t) (d6? + fic(0)dp?)

where fi(#) = sin?8, f_1(#) = sinh? 6 or fo(A) = 1, depending
on the curvature of the 2-sheets.



Background: LRS Il

Homogeneous LRS Il cosmologies with cosmological constant A.

» Locally Rotationally Symmetric (LRS).
LRS II: Hap = wap =& = 0. Also ¢ = 0.

> 42 = —df + F(1d2 + B(1) (87 + Ac(0)d?)

where fi(#) = sin?8, f_1(#) = sinh? 6 or fo(A) = 1, depending
on the curvature of the 2-sheets.

> The expansion and shear are given by
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Evolution equations

» The electric part of the Weyl tensor is given algebraically as

2 2 1

2 1
E = —Sp—SAN-—24262+230— N
373 T T3 2
» Evolution equations
: 2 2 1 2
Y = Su4+SA+ZY2-30-—26%+1N
gt 3ht 3 o/ T
. 3
foo= —bp+p)—SEN
.1, 1 3,
0 = 39 2(u+3p 2M) 2:.

» p and I1 freely specifiable.



Gauge problem in perturbation theory

> How to define the background metric g, of the physical
lumpy universe with metric g, = 8ap + 0gap? No unique way
of identifying points on background and real universe.

Figure: Ellis and Bruni, Phys. Rev. D, 40, 1804 (1989)




Gauge problem in perturbation theory

> How to define the background metric g, of the physical
lumpy universe with metric g, = 8ap + 0gap? No unique way
of identifying points on background and real universe.

Figure: Ellis and Bruni, Phys. Rev. D, 40, 1804 (1989)

» GIC - Gauge invariant and covariant: Choose as the "small”
quantities variables that are covariant and zero on
background. Gauge invariant: Stewart-Walker lemma3.

*Proc. R. Soc. London A341 49 (1974)
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Perturbations

» Variables that are nonzero on the background:
{6,%,& p,p, M}

» Variables that are zero on the background:
{aav ¢a ga Caby Oéa, Aa Aav Qv Qav Zav Zaba 537 gabv Ha H27 %aba I_I37 nab}

Freedom in first order choice of n, can be used to put a; = 0.

» Gradients of background variables (zero on background):
{Wa =040, Va =102, Xy =028, p1a = dapt, pa=0ap, Ya= 53“}

> (Why not = n°D,6 etc.?: Can be expressed in terms of §,0
etc. when doing a harmonic decomposition.)

» 0:th order + 1:st order system



Harmonic decomposition*

Harmonic decomposition in terms of comoving wavenumbers k|
and k. Turns system into first order ODEs and constraints.

> Scalars: W= Y Wy, P, Qi .
hke
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“C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)



Harmonic decomposition*

Harmonic decomposition in terms of comoving wavenumbers k|
and k. Turns system into first order ODEs and constraints.

> Scalars: W= Y Wy, P, Qi .
hke

2 K K3
P:f;gp, 52QL:*‘TJ2'QL
1 2
. o % ke gV Ak
> Vectors: W, = > Py wkuh a +wk”kLQa v
Kk

k ault
Q- = 325anJ' s Qa = 32Eab5kaJ‘
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Harmonic decomposition*

Harmonic decomposition in terms of comoving wavenumbers k|
and k. Turns system into first order ODEs and constraints.

> Scalars: W= Y Wy, P, Qi .
hke

P=-1p #ei=-5a

> Vectors: ¥V, = kH%L Py, (\III‘(/H " ko W,‘(/” kLa‘i{l),
Q5 = ap0,Qk 6? = axep0P QKL

> Tensors: W, = k%l Pk” (\IIkTH’kL Qgg +WZ‘—"MZ):§),
Qb = By Q. Qhp = Bee(adTsy Q

“C.A. Clarkson, Phys. Rev. D, 76, 104034 (2007)



Evolution equations

The 1:st order system can be reduced into two subsystems for the
even and odd harmonic coefficients respectively °.

» Even sector: Y .
Evolution equations for: Q°, uv, H ', €T, X7, Q¥ and @°

Freely specifiable: p¥, AY, A% 1Y, N7 and YV
Algebraically given: {T, ev, ﬁv, VooV, W, VW, XV and qbs

®In the following the indices kykL on the harmonic coefficients are

suppressed



Evolution equations

The 1:st order system can be reduced into two subsystems for the
even and odd harmonic coefficients respectively °.

» Even sector: Y .
Evolution equations for: Q°, uv, H ', €T, X7, Q¥ and @°

Freely specifiable: p¥, AY, A% 1Y, N7 and YV
Algebraically given: CT, ev, ﬁv, VooV, W, VW, XV and qbs

» Odd sector: iy
Evolution equations for: Q°, H', &', Q

Freely specifiable: .71\/, ﬁv and ﬁT
Algebraically given: ZT, gv, H> HY, fv, fT, aV, \7\/, WV,
j(v, T/V, 55, Qv ﬁv and ﬁv

®In the following the indices kykL on the harmonic coefficients are
suppressed



Evolution equations for odd sector

-V mn
Q' =-(30-19)0Q" (u+p-3m A+ 2 gs
Raé;zkiﬁT_ Ikilﬂﬁv,

Hl=goe <(Z+‘?) (7 +3n) _3Zki> Q"+
(R-R) (R+3n) —ox28) (£7+37") - MFT
~3E+F-25 (X4 §))HT+(S+ )05

3,

H
ﬁV

QL

2

T =T iki =
+i0 =Sl -D+ Iy H T+ POS+ (Z+ 9T +

Pi2 =V 3 oM —=T ﬁT
m@ —§(F+Z(D—?)) (5 +7)

tnl-
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Dissipative fluids

1-component fluid: Let u? be 4-velocity of matter

» g, heatflow, 7, shear viscosity, p = p + p¢, where p is
equilbrium pressure and p¢, bulk viscosity.

> N particle density, satisfies N + ©ON = 0 (particle
conservation). Z, = §,N

» Assume p = p(u,N') and T = T(p, N') (temperature).
» Eckart theory: Acausal.

Bulk viscosity: p¢, = —(g©,
Shear viscosity: map = —210,p,
Heat flow: g, = —k (D, T+ TA,)

where

(B = CB(MvN)vn = 77(:“3-/\/’)7’43 = K’(lu’v-/\/’)



Closed system for Eckart theory

The two systems now close

» Even sector:

Evolution equations for: Zv,ﬁv, uY, H'ET YT, QY and @S

Algebraically given: p¥, AY, A5, NV, nT YV, ¢T, &Y, ﬁv,

VooV, WY, W, XY and ¢°



Closed system for Eckart theory

The two systems now close

» Even sector:

Evolution equations for: Zv,ﬁv, uY, H'ET YT, QY and @S
Algebraically given: p¥, AY, A5, NV, nT YV, ¢T, &Y, ﬁv,
VooV, WY, VW, XY and ¢°

» Odd sector:
Evolution equations for: Q°, H7, ET, av
Algebraically given: 71\/, ﬁv, ﬁT, ZT, Ev, Ho, HY, fV, ny
av, VW, W X", ¥, ¢85, QY, p¥ and 1Y



Causal theory

A simplified causal theory is given by °

>
TlpCB + pCB = _CBe
ToT<ab> + Tab = —2N0ap
4" +q¢° = —k(D°T+ TA?),

where 7; are relaxation times.

®R. Maartens, Lecture notes, Natal University (1996)



Causal theory

A simplified causal theory is given by °

>
TlpCB + pCB = _CBe
ToT<ab> + Tab = —2N0ap
4" +q¢° = —k(D°T+ TA?),

where 7; are relaxation times.

> The two systems again close but with evolution equations
added for NV, N7, zV. vV pé/ and ﬁv, ﬁT, respectively.

®R. Maartens, Lecture notes, Natal University (1996)
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Generation of vorticity

» Vorticy cannot be generated in a barotropic perfect fluid.

> Even sector Eckart theory (Zv,ﬁv, MV, ﬁT, ET 2T, @Y, QS)

5" k| v 1 NS 20 , ¥, T\av
Q = 231KTQ - 232/{TQ - (T + 2 + 7’) Q

Y=(x-®-px’- 32,1” (QV+k (rop¥ +m2Y)) — €T

=, Q= H =, jfV=,ET=.,2V=.

» In the graphs below it can be seen how an intial nonzero shear

and zero heatflow produces a vorticity due to shear viscosity.
10-6
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» Evolution equations for general first order covariant
perturbations on homogeneous LRS Il cosmologies
determined.

» Closed systems obtained for 1-component dissipative fluids,
both in Eckart’s acausal theory and in a simplified causal
theory.

» Seen how vorticity can be generated from shear viscosity
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