Peeling in Generalized Harmonic Gauge

Miguel Duarte

based on work done with J. Feng, E. Gasperín and D. Hilditch

Peeling

Smoothness of null infinity implies certain decay of Weyl tensor components

$$\Psi_N \sim \frac{1}{R^{5-N}}$$

$$\Psi_4 = O(R^{-1}), \Psi_3 = O(R^{-2}), \Psi_2 = O(R^{-3}),$$

$$\Psi_1 = O(R^{-4}), \Psi_0 = O(R^{-5}).$$

Formalism or choosing variables

 $\psi^{a} = \partial_{T}^{a} + \mathcal{C}_{+}^{R} \partial_{R}^{a}$ $\underline{\psi}^{a} = \partial_{T}^{a} + \mathcal{C}_{-}^{R} \partial_{R}^{a}$

$$g^{ab} = -2\tau^{-1}e^{-\varphi}\psi^{(a}\underline{\psi}^{b)} + \not\!\!\!/ g^{ab}$$
$$g_{ab} = -2\tau^{-1}e^{\varphi}\sigma_{(a}\underline{\sigma}_{b)} + \not\!\!/ g_{ab}$$

$$\sigma_a = e^{-\varphi} \psi_a$$
$$\underline{\sigma}_a = e^{-\varphi} \underline{\psi}_a$$

$$\sigma_a = -\mathcal{C}_+^R \nabla_a T + \nabla_a R + \mathcal{C}_A^+ \nabla_a \theta^A$$
$$\underline{\sigma}_a = \mathcal{C}_-^R \nabla_a T - \nabla_a R + \mathcal{C}_A^- \nabla_a \theta^A.$$

Formalism or choosing variables

$$\begin{split} \psi^{a} &= \partial_{T}^{a} + \mathcal{C}_{+}^{R} \partial_{R}^{a} & g^{ab} = -2\tau^{-1}e^{-\varphi}\psi^{(a}\underline{\psi}^{b)} + \underline{\phi}^{ab} \\ \psi^{a} &= \partial_{T}^{a} + \mathcal{C}_{-}^{R} \partial_{R}^{a} & g_{ab} = -2\tau^{-1}e^{\varphi}\sigma_{(a}\underline{\sigma}_{b)} + \underline{\phi}_{ab} \\ \phi_{a} &= e^{-\varphi}\psi_{a} & \text{Outgoing and incoming null vectors} \\ \sigma_{a} &= e^{-\varphi}\underline{\psi}_{a} & \text{angular metric} \end{split}$$

$$\sigma_a = -\mathcal{C}_+^R \nabla_a T + \nabla_a R + \mathcal{C}_A^+ \nabla_a \theta^A$$
$$\underline{\sigma}_a = \mathcal{C}_-^R \nabla_a T - \nabla_a R + \mathcal{C}_A^- \nabla_a \theta^A.$$

Formalism or choosing variables

$$g^{ab} = -2\tau^{-1}e^{-\varphi}\psi^{(a}\underline{\psi}^{b)} + g^{ab} \qquad (q^{-1})^{ab} = e^{\epsilon}R^{2}g^{ab}$$
$$g_{ab} = -2\tau^{-1}e^{\varphi}\sigma_{(a}\underline{\sigma}_{b)} + g_{ab} \qquad \epsilon = (\ln|g| - \ln|g|)/2$$

$$(q^{-1})^{AB} = \begin{bmatrix} e^{-h_+} \cosh h_{\times} & \frac{\sinh h_{\times}}{\sin \theta} \\ \frac{\sinh h_{\times}}{\sin \theta} & \frac{e^{h_+} \cosh h_{\times}}{\sin \theta^2} \end{bmatrix}$$

We end up with 10 independent variables:

$$\varphi, \quad \mathcal{C}^R_{\pm}, \quad \mathcal{C}^E_A, \quad \epsilon, \quad h_+, \quad h_{\times}$$

The good, the bad and the ugly

$$X^{\underline{lpha}} = (T, X^{\underline{i}})$$

 $\Gamma[\mathring{
aarbol{a}}]_{a}{}^{b}{}_{c} = (\mathring{
aarbol{b}}_{a}\partial^{b}_{\underline{lpha}})(dX^{\underline{lpha}})_{c}$
 $\mathring{\Box}\phi = g^{ab}\mathring{
aarbol{b}}_{a}\mathring{
abla}_{b}\phi$

$$\overset{\circ}{\Box} g = 0 , \overset{\circ}{\Box} b = (\nabla_T g)^2 \overset{\circ}{\Box} u = \frac{2}{R} \nabla_T u$$

The good, the bad and the ugly

$$\mathring{\Box}g = 0 \ ,$$

 $\mathring{\Box}b = (
abla_T g)^2$
 $\mathring{\Box}u = rac{2}{R}
abla_T u$

$$g = \sum_{n=1}^{\infty} \frac{G_n(\psi^*)}{R^n},$$

$$b = \sum_{n=1}^{\infty} \frac{B_n}{R^n},$$

$$u = \frac{m_{u,1}}{R} + \sum_{n=2}^{\infty} \frac{U_n}{R^n},$$

 $B_n = B_{n,0}(\psi^*) + B_{n,1}(\psi^*) \log R$ $U_n = U_{n,0}(\psi^*) + U_{n,1}(\psi^*) \log R$

GBU with stratified null forms

$$\begin{vmatrix} \overset{\circ}{\Box}g = \mathcal{N}_g , \\ \overset{\circ}{\Box}b = (\nabla_T g)^2 + \mathcal{N}_b \\ \overset{\circ}{\Box}u = \frac{2}{R}\nabla_T u + \mathcal{N}_u \end{vmatrix} \begin{array}{l} g = \frac{G_{1,0}(\psi^*)}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^g} \frac{(\log R)^k G_{n,k}(\psi^*)}{R^n} \\ b = \frac{B_1}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^b} \frac{(\log R)^k B_{n,k}(\psi^*)}{R^n} \\ u = \frac{m_{u,1}}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^u} \frac{(\log R)^k U_{n,k}(\psi^*)}{R^n} , \end{aligned}$$

Reduced Einstein field equations

Reduced Ricci tensor:

$$\mathcal{R}_{ab} := R_{ab} - \nabla_{(a} Z_{b)} + W_{ab}$$

$$X^{\underline{\alpha}'} = [(T', X^{\underline{i}'})] = (T, R, \theta^A)$$

$$\Gamma[\overset{\bullet}{\nabla}]_{b}{}^{a}{}_{c} = (\overset{\bullet}{\nabla}_{b}\partial^{a}_{\underline{\alpha}'})(dX^{\underline{\alpha}'})_{c}$$

 $Z^a := \Gamma^a + F^a$

Reduced Einstein field equations

Reduced Ricci tensor:

$$\begin{aligned} \mathcal{R}_{ab} &:= \overset{\bullet}{R_{ab}} - \nabla_{(a} Z_{b)} + \overset{\bullet}{W_{ab}} \\ & \underset{\text{Ricci}}{\overset{\bullet}{Ricci}} \\ X^{\underline{\alpha}'} &= (T', X^{\underline{i}'}) = (T, R, \theta^{A}) \\ & \underset{\Gamma[\hat{\nabla}]b^{a}{}_{c}}{c} = (\hat{\nabla}_{b}\partial^{a}_{\underline{\alpha}'})(dX^{\underline{\alpha}'})_{c} \\ \hline Z^{a} &:= \overset{\bullet}{\Gamma}^{a} + \overset{\bullet}{F^{a}} \\ & \underset{\text{Constraints}}{\overset{\bullet}{C}} \\ \end{aligned}$$

Gauge choice and constraint addition

Cartesian harmonic gauge

 $F^a = g^{bc} \Gamma[\mathring{\nabla}, \mathring{\nabla}]^a{}_{bc}$

Coordinates are harmonic:

 $g^{bc}\Gamma[\nabla,\mathring{\nabla}]_{b}{}^{a}{}_{c}=0$

Constraint addition

Each of the 4 constraints is a time derivative of a variable to leading order

We can turn 4 of the equations into uglies

Asymptotic system

$$\begin{split} & \mathring{\Box}\varphi = \mathcal{N}_{\varphi} \,, \\ & \mathring{\Box}\mathcal{C}_{+}^{R} = \frac{2}{R}\nabla_{T}\mathcal{C}_{+}^{R} + \mathcal{N}_{\mathcal{C}_{+}^{R}} \,, \\ & \mathring{\Box}\mathcal{C}_{-}^{R} = -\frac{1}{2}(\nabla_{T}h_{+})^{2} - \frac{1}{2}(\nabla_{T}h_{\times})^{2} + \mathcal{N}_{\mathcal{C}_{-}^{R}} \,, \\ & \mathring{\Box}\mathcal{C}_{A}^{+} = \frac{2}{R}\nabla_{T}\mathcal{C}_{A}^{+} + \mathcal{N}_{\mathcal{C}_{A}^{+}} \,, \\ & \mathring{\Box}\mathcal{C}_{A}^{-} = \frac{4}{R}\nabla_{T}\mathcal{C}_{A}^{-} + \mathcal{N}_{\mathcal{C}_{A}^{-}} \,, \\ & \mathring{\Box}\epsilon = \frac{2}{R}\nabla_{T}\epsilon + \mathcal{N}_{\epsilon} \,, \\ & \mathring{\Box}h_{+} = \mathcal{N}_{h_{+}} \,, \\ & \mathring{\Box}h_{\times} = \mathcal{N}_{h_{\times}} \,. \end{split}$$

$$\begin{split} & \overset{\circ}{\Box} g = \mathcal{N}_g \,, \\ & \overset{\circ}{\Box} b = (\nabla_T g)^2 + \mathcal{N}_b \\ & \overset{\circ}{\Box} u = \frac{2}{R} \nabla_T u + \mathcal{N}_u \end{split}$$

With this gauge and constraint addition:

- 3 goods
- 1 bad
- 6 uglies

GBU with stratified null forms

$$\begin{vmatrix} \overset{\circ}{\Box}g = \mathcal{N}_g , \\ \overset{\circ}{\Box}b = (\nabla_T g)^2 + \mathcal{N}_b \\ \overset{\circ}{\Box}u = \frac{2}{R}\nabla_T u + \mathcal{N}_u \end{vmatrix} \begin{array}{l} g = \frac{G_{1,0}(\psi^*)}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^g} \frac{(\log R)^k G_{n,k}(\psi^*)}{R^n} \\ b = \frac{B_1}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^b} \frac{(\log R)^k B_{n,k}(\psi^*)}{R^n} \\ u = \frac{m_{u,1}}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^u} \frac{(\log R)^k U_{n,k}(\psi^*)}{R^n} , \end{aligned}$$

GBU with stratified null forms

$$\overset{\circ}{\Box}g = \mathcal{N}_g ,$$

$$\overset{\circ}{\Box}b = (\nabla_T g)^2 + \mathcal{N}_b$$

$$\overset{\circ}{\Box}u = \frac{2}{R}\nabla_T u + \mathcal{N}_u$$

$$g = \frac{G_{1,0}(\psi^*)}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^g} \frac{(\log R)^k G_{n,k}(\psi^*)}{R^n}$$

$$b = \frac{B_1}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^g} \frac{(\log R)^k B_{n,k}(\psi^*)}{R^n}$$

$$u = \frac{m_{u,1}}{R} + \sum_{n=2}^{\infty} \sum_{k=0}^{N_n^g} \frac{(\log R)^k U_{n,k}(\psi^*)}{R^n} ,$$

Violation of peeling

With cartesian harmonic gauge and our particular constraint addition, we get:

$$\Psi_4 = O(R^{-1}), \Psi_3 = O(R^{-2}), \Psi_2 = O(\log R/R^3)$$

Peeling is violated

Recovering peeling

Cartesian harmonic gauge + subheading

$$F^a = \mathring{F}^a + \check{F}^a$$

Constraint addition

Each of the 4 constraints is a time derivative of a variable to leading order

We can turn 4 of the equations into uglies of a special kind:

$$\mathring{\Box}u = \frac{2p}{R} \nabla_T u + \mathcal{N}_u$$

Recovering peeling

$$\begin{split} & \mathring{\Box}\varphi = \nabla_T \check{F}^{\sigma} + N_{\varphi} \,, \\ & \mathring{\Box}\mathcal{C}^R_+ = \frac{2p}{R} \nabla_T \mathcal{C}^R_+ + N_{\mathcal{C}^R_+} \,, \\ & \mathring{\Box}\mathcal{C}^R_- = -\frac{1}{2} (\nabla_T h_+)^2 - \frac{1}{2} (\nabla_T h_{\times})^2 - 2\nabla_T \check{F}^{\underline{\sigma}} + N_{\mathcal{C}^R_-} \,, \\ & \mathring{\Box}\hat{\mathcal{C}}^A_A = \frac{2p}{R} \nabla_T \hat{\mathcal{C}}^A_A + N_{\hat{\mathcal{C}}^A_A} \,, \\ & \mathring{\Box}\hat{\mathcal{C}}^-_A = \frac{4}{R} \nabla_T \hat{\mathcal{C}}^-_A - 2R \nabla_T \check{F}^A + N_{\hat{\mathcal{C}}^-_A} \,, \\ & \mathring{\Box}\epsilon = \frac{2p}{R} \nabla_T \epsilon + N_{\epsilon} \,, \\ & \mathring{\Box}h_+ = N_{h_+} \,, \\ & \mathring{\Box}h_{\times} = N_{h_{\times}} \,. \end{split}$$

 $\mathring{\Box}\varphi = \frac{2p}{R}\nabla_T\varphi + N_\varphi\,,$ $\mathring{\Box}\mathcal{C}^R_+ = \frac{2p}{R}\nabla_T\mathcal{C}^R_+ + N_{\mathcal{C}^R_+},$ $\mathring{\Box}\mathcal{C}_{-}^{R} = \frac{2p}{R}\nabla_{T}\mathcal{C}_{-}^{R} + N_{\mathcal{C}_{-}^{R}},$ $\mathring{\Box}\hat{\mathcal{C}}_A^+ = \frac{2p}{R}\nabla_T\hat{\mathcal{C}}_A^+ + N_{\hat{\mathcal{C}}_A^+},$ $\mathring{\Box}\hat{\mathcal{C}}_A^- = \frac{2p}{R}\nabla_T\hat{\mathcal{C}}_A^- + N_{\hat{\mathcal{C}}_A^-},$ $\mathring{\Box}\epsilon = \frac{2p}{R}\nabla_T\epsilon + N_\epsilon\,,$ $\mathring{\Box}h_+ = N_{h_+} \,,$ $\mathring{\Box}h_{\times} = N_{h_{\times}} \; .$

- 2 goods
- 8 uglies

Regularization?