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• Standard cosmological model with inflation is extremely 
successful describing primordial inhomogeneities. 

• Is it completely satisfactory, considering the primeval 
stages of  the Universe with increasingly high curvature?

Motivation



• Standard cosmological model with inflation is extremely 
successful describing primordial inhomogeneities. 

• Is it completely satisfactory, considering the primeval 
stages of  the Universe with increasingly high curvature? 

• Theoretically: 

Big-Bang singularity: loss of  predictability. 

Quantum gravity phenomena? 

Non-inflationary epoch: State for the perturbations?

Motivation



• Standard cosmological model with inflation is extremely 
successful describing primordial inhomogeneities. 

• Is it completely satisfactory, considering the primeval 
stages of  the Universe with increasingly high curvature? 

• Observationally: 

Angular power spectrum in CMB: Anomalies. 

Power suppression , lensing amplitude , … 

Strongly affected by cosmic variance, but could point 
to new physics       Planck regime of  the Universe?

ℓ ≲ 30 > 1

Motivation



• Standard cosmological model with inflation is extremely 
successful describing primordial inhomogeneities. 

• Is it completely satisfactory, considering the primeval 
stages of  the Universe with increasingly high curvature? 

• Theoretical and observational concerns. 

• Promising candidate: Loop Quantum Cosmology (LQC). 

• Typically includes a classical pre-inflationary epoch. 

• Robust predictions require disentangling LQC from GR 
effects on the evolution of  the perturbations.

Motivation



Loop Quantum Cosmology: 
Mukhanov-Sasaki equations



• Canonical quantization program for spacetimes with high 
degree of  symmetry: e.g. cosmological spacetimes. 

• Techniques from the non-perturbative theory of  LQG. 

• Widely studied in e.g. FLRW-type cosmologies. 

• Provides robust quantum mechanisms to resolve the 
cosmological singularity          Big Bounce. 

• Effective bouncing regimes with modified Friedmann eqs. 

• Can be combined with standard quantum field theory 
techniques to include inhomogeneities.

Why LQC?



• Hybrid quantization of  perturbed cosmology with inflaton: 

Background cosmology: LQC techniques. 

Gauge-invariant perturbations: Fock representation. 

Perturbations in LQC



• Hybrid quantization of  perturbed cosmology with inflaton: 

Background cosmology: LQC techniques. 

Gauge-invariant perturbations: Fock representation. 

• Mean-field approximation on quantum constraint equation 
Effective constraint for the perturbations, depends on 
background geometry via expectation values. 

• Effective Mukhanov-Sasaki equations: 

Mass codifies LQC effects on the background.

Perturbations in LQC

v′ ′ ⃗k
+ [k2 + seff]v ⃗k = 0, seff = seff(η)



• Effective Mukhanov-Sasaki equations: 

• Restrict to background states with effective LQC behavior. 

• Phenomenologically interesting solutions: Large observable 
scales  today were  order of  curvature at the bounce. 

• They are all such that the kinetic energy of  the inflaton 
greatly dominate over its potential.

a/k ∼

Mukhanov-Sasaki equations

v′ ′ ⃗k
+ [k2 + seff]v ⃗k = 0



• Effective Mukhanov-Sasaki equations: 

• Restrict to background states with effective LQC behavior. 

• Phenomenologically interesting solutions: Large observable 
scales  today were  order of  curvature at the bounce. 

• They are all kinetically dominated at the bounce. 

• Quantum effects tightly narrowed around the bounce. 

• They imply a short-lived inflation (  e-folds), and a 
classical deccelerated preinflationary expansion.

a/k ∼

≳ 65

Mukhanov-Sasaki equations

v′ ′ ⃗k
+ [k2 + seff]v ⃗k = 0



GR with KD and LQC: 
Approximations



• Deep in the pre-inflationary epoch, the potential is 
completely negligible compared with kinetic energy. 

• Approximate this classical epoch  as a Friedmann 
universe with a massless scalar field.

(η0, ηi)

Inflation with KD epoch in GR



• The evolution of  the Universe during slow-roll inflation is 
of  quasi-de Sitter type. 

• For our purposes here, we ignore transition effects and 
deviations from an exact de Sitter phase.

Inflation with KD epoch in GR



• Approximate pre-inflationary epoch  as a Friedmann 
universe with a massless scalar field. 

• Approximate the inflationary period  as de Sitter. 

• Instantaneous transition between both periods. 

• Approximate Mukhanov-Sasaki equations: 

(η0, ηi)

[ηi, ηend]

Inflation with KD epoch in GR

v′ ′ ⃗k
+ (k2 + s̃GR) v ⃗k = 0,

s̃GR =
1
4 (η − η0 + 1

2H0a0 )
−2

, η ∈ (η0, ηi)

−2H2
Λ [a−1

i − HΛ(η − ηi)]−2 η ∈ [ηi, ηend]



• Approximate pre-inflationary epoch  as a Friedmann 
universe with a massless scalar field. 

• Approximate the inflationary period  as de Sitter. 

• Instantaneous transition between both periods. 

• Approximate Mukhanov-Sasaki equations: 

(η0, ηi)

[ηi, ηend]

Inflation with KD epoch in GR

v′ ′ ⃗k
+ (k2 + s̃GR) v ⃗k = 0,

s̃GR =
1
4 (η − η0 + 1

2H0a0 )
−2

, η ∈ (η0, ηi)

−2H2
Λ [a−1

i − HΛ(η − ηi)]−2 η ∈ [ηi, ηend]

Discontinuity!



• Approximate pre-inflationary epoch  as a Friedmann 
universe with a massless scalar field. 

• Approximate the inflationary period  as de Sitter. 

• For the interval  with strong loop quantum effects, we 
approximate the mass by a Pöschl–Teller potential. 

• The potential is fixed to match the exact values of  the (KD) 
LQC and GR masses at, respectively, the bounce and .  

• The goodness of  the approximation depends on the choice 
of  . Relative error can be made to grow at most to 15%, 
and quickly become negligible afterwards.

(η0, ηi)

[ηi, ηend]

[ηB, η0]

η0

η0

Inflation with KD epoch in LQC



Vacuum state and power spectra



• In de Sitter, solutions to Mukhanov-Sasaki equations: 

• Primordial power spectrum is well-approximated by: 

• Dephasing between constants typically leads to oscillations.

Power spectrum in de Sitter
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|Bk − Ak |2 , |Bk |2 − |Ak |2 = 1



• In de Sitter, solutions to Mukhanov-Sasaki equations: 

• Primordial power spectrum: 

• Dephasing between constants: Oscillations. 
If  no interference in previous epoch(s), origin can be 
traced to instantaneous changes of  the mass function.

Power spectrum in de Sitter
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• In de Sitter, solutions to Mukhanov-Sasaki equations: 

• Primordial power spectrum: 

• Dephasing between constants: Oscillations. 

• For well-behaved initial state, we remove it in the end.

Power spectrum in de Sitter
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• Vacuum state: Initial conditions for the perturbations. 

• In de Sitter, natural choice is Bunch-Davies:   

• What if  there are observable scales  that are sensitive to 
the spacetime curvature in the pre-inflationary epoch? 

Choice of  vacuum becomes an open question

Ak = 0, Bk = 1.

k

Choice of  vacuum state



• Vacuum state: Initial conditions for the perturbations. 

• In de Sitter, natural choice is Bunch-Davies:   

• What if  there are observable scales  that are sensitive to 
the spacetime curvature in the pre-inflationary epoch? 

• For a robust comparative study: Criterion of  choice should 
be applicable to different types of  cosmological dynamics. 

• Ideally, it should also be motivated by fundamental 
considerations, and lead to positive-frequency solutions that  
do not present rapid oscillations in time and/or .

Ak = 0, Bk = 1.

k

k

Choice of  vacuum state



• Vacuum state: Initial conditions for the perturbations. 

• Here, criterion is fixed based on previous investigations: 

Originates from an ultraviolet diagonalization of  the 
Hamiltonian in quantum cosmology. 

In the ultraviolet regime, it is the unique one that does 
not display rapid time oscillations of  frequency . 

Applied to Minkowski and de Sitter spacetimes, leads 
to Poincaré and Bunch-Davies vacua. 

k

Choice of  vacuum state



• Vacuum state: Initial conditions for the perturbations. 

• Here, criterion is fixed based on previous investigations: 

• The smooth mass  can be evaluated on GR or effLQC. 

• Formula not applicable with our approximations (due to 
discontinuities), but can be used to fix initial conditions in 
the earliest smooth epoch (KD or bouncing regime).

s

Choice of  vacuum state
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• In the case of  GR with KD, our criterion fixes the following 
positive-frequency solutions in the epoch : 

• By continuity, fixes positive-frequency solutions in de Sitter. 

• Resulting power spectrum displays artificial oscillations 
around , which we remove with the transformation:

(η0, ηi)

kI = aiHΛ

Power spectrum in GR

μk =
πy
4

H(2)
0 (ky), y = η − η0 +

1
2H0a0

Ak → Akin
k = |Ak | , Bk → Bkin

k = |Bk |



• Resulting power spectrum displays artificial oscillations 
around , which we remove with the transformation:kI = aiHΛ

Power spectrum in GR

Ak → Akin
k = |Ak | , Bk → Bkin

k = |Bk |

4�2�kin (k)/H�
2
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• In the case of  hybrid LQC, our criterion fixes positive-
frequency solutions in the epoch  by means of: 

• By continuity, fixes positive-frequency solutions in the KD 
classical epoch and these, in turn, in the de Sitter regime. 

• Resulting power spectrum displays artificial oscillations for 
, which we remove in analogous way:

[ηB, η0]

k ≲ kLQC = α ( ∼ 3)

Power spectrum in (hybrid) LQC

hk = − iαk̃ − 2αx(1 − x)
cd

1 + ik̃

2F1 (c + 1,d + 1; 2 + ik̃; x)
2F1 (c, d; 1 + ik̃; x)

, k̃ = k /α

Ak → ALQC
k = |Ak | , Bk → BLQC

k = |Bk |



• Resulting power spectrum displays artificial oscillations for 
, which we remove:k ≲ kLQC = α ( ∼ 3)

Power spectrum in (hybrid) LQC

Ak → ALQC
k = |Ak | , Bk → BLQC

k = |Bk |

4�2�LQC (k)/H�
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• Resulting power spectrum displays artificial oscillations for 
, which we remove. 

• We compare it with the one in the GR with KD model for 
which inflation starts at the same scale as in LQC:  

k ≲ kLQC = α ( ∼ 3)

kI ∼ 10−3 .

Power spectrum in (hybrid) LQC
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• Approximative methods to understand analytically the 
main differences between (classical) KD preinflationary and 
LQC effects leading to suppression in power spectra.  

• Differences traceable to existence of  two distinct scales: 

Curvature at onset of  inflation (both models). 

Curvature around the bounce (only in LQC). 

• They always differ in 3 orders of  magnitude for interesting 
LQC solutions (phenomenologically speaking). 

• Study can be used to compare other preinflationary models. 

• Approximations yet rough: Call for further developing the 
studies about the dynamical behavior of  the chosen vacua.

Conclusions


