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Rigid bodies and Ehrenfest’s paradox




e Rigid body: distance between any two points at a given
instant remains constant.

e SO no rigid bodies in relativity.

e Physically, it takes time for one end of the body to receive
information about forces acting on the other end.



e Ehrenfest's paradox:
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e SO no undeformable bodies in relativity.



Relativistic elasticity

e An elastic medium in general relativity is described by:
— A spacetime (M, g);
— A Riemannian 3-manifold (3, 6) (reference configuration);

— A projection map m : M — > whose level sets are timelike
curves (the worldlines of the medium particles).
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e If we choose local coordinates (z!,z2,%3) on X then we can
think of @ as a set of three scalar fields.

e We can complete (z1,72,23) into coordinates (f,z1,z2,z3)
for (M, g) yielding the rest frame of any given worldline:

g = —d¥ + ;;dz'dz’ (at that worldline).

e Note that
v = ’yijdiida_cj

is a (time-dependent) Riemannian metric on X, describing
the local deformations of the medium along each worldline.



e We can compute the (inverse) metric v from

e Choose a Lagrangian density £ of the form £ = L(Z", §;;,v")
for the action

S = / L/ —gd .
M
The energy-momentum tensor is then
oL oL IV
Ly = dghv L gy = 2 W@sz Ovt! — L guu.



e [ herefore

IS the rest energy density.

e The choice of p = p(F',§;;,7) is called the elastic law.

d —
o Perfect fluid: p = p(n) = p = nd—p — p, Where n = \/det(fy”)
n

(assumes that §;; is the Kronecker delta).



Example: rigid rod

e For one-dimensional elastic bodies in a two-dimensional space-
time (M, g) there is no difference between solids and fluids:

the Lagrangian depends only on ~1 = §,7z9%%.

e For a rigid elastic body (speed of sound = speed of light)
we have p = p + po, vielding

p= '02—0(711 +1) = %O(ﬁaa‘:a% +1).



e [ his is the Lagrangian for a massless scalar field, and so the
equation of motion is just the wave equation Uz = 0, which
can be exactly solved in two dimensions.

e For example, the motion of an uniformly stretched rigid rod
released from rest (imposing zero pressure at the endpoints)
in Minkowski’'s two-dimensional spacetime is as follows:



2 cosh(e)L

cosh(e)L




Spherical symmetry
o Metric: g = —e2(M) g2 4 268(r)qp2 4 -2 (d92 + sin?2 0d902>.

e [ OV equations:

(dp 2 do
99 = = (pran — Prad) — (Prad + P)—
dr r dr
9 ;
d 2P
2 (ﬁ + 4777“2prad)
| dr r r

where

—28(r) _ 1 _ 2m(r)
T

, m(r) = 4n /Or p(uw)udu.



e Equation of

and

state: p(r) = p(6(r),n(r)), where

(5(r) = \/det(y9)

3 (T
_ > B(u) 2
\n(r) = 7a3/0 e d(uw)u“du

Prad(d,m) = 60s5p(6,m) — p(d,n)

- . 3 .
Ptan(9,m) = Draq(d, 1) + Enanp(& n)

(so all matter quantities depend on §).



e Must be careful to consider only physically reasonable solu-
tions when integrating the TOV equations.

e Must check energy conditions:

(SEC : P+ Prad + 2Ptan =20, p+pPrad 20, p+ptan 2 0.
WEC: p=>0; p+4+prad =20, p+ptan=0.

NEC: p+prag 20, p+ptan > 0.

\DEC:  p2>|pradli p = Iptanl:




e Must check reality and subluminality of the speeds of sound:

( 505D
e (6,m) = 224,
p + Prad

c%—(é, 77) _ ﬁtan — ﬁrad ;
(p + Pran) (1 — 2/n?)

505 .
EL(57 77) — OsPtan + 377877ptan;

p + Dtan
~2 ﬁrad — ZA)tan
CT((Sa 77) — R
\ (,0 + prad) (1 — 772/52>

(many times missed when considering anisotropic models).



Material models

e Polytropic fluid:

1
p(8,m) = (1 — kn)pgd + rnpgdtTn.

e Leads to
,\ . 141
Prad = DPtan = Ko +n7

ntl —1
with & the baryon density and K = k(1 —xn)™ n pg".

e Quadratic elastic correction:

1
p(8,m) = (1 — wn)pod + knpod T + epo (8 — 1)



e Model with scale-invariant Newtonian limit;:

p(8,m) = po(1 — kn)é + H:po577”[— - ((1 - _> (14n) + %>

e Here s can be interpreted as a shear index; when s = n and
e = 0 we recover the relativistic polytropes; for s =n =1 it
reduces to the quadratic correction model.



e Gauge invariance: these materials are pre-stressed, so no nat-
ural reference state; invariance under redefinition of reference
state reduces (pg, k,e) to two gauge-invariant parameters:

n+1 1 1-n
K=xr(1l—-rn) 7 py", E:E( " ) or E=2.
k \1 — Kkn K

e Radial perturbations: Linearized time-dependent equations
for ¢(t,r) = e“((r) and x(t,r) = ey (r) (related to radial
displacement and radial pressure) are

( R dC B R
585Prad$ — € (3a+6)T2X - %nanpradc
< :
- dx _
\585prad5 — %nanpradx - [Ql + QQWQ} S

with suitable boundary conditions.



Numerical results

e Mass-radius diagrams for quadratic model with n = % (left)
and scale-invariant model with n = 1 (right). Dashed means
superluminal. There exist ultracompact configurations.
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e Sound speeds (top) and density/pressure profiles (bottom)

for marginally causal stars in the quadratic model with n = %
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e Radial stability: Squared frequency eigenvalues for radial sta-
1

bility analysis of elastic stars in quadratic model with n = -
T hreshold of instability occurs at the maximum mass.
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Conclusion and outlook

e Elastic models are useful tools to model extended bodies in
general relativity.

e Anisotropies are often introduced via ad-hoc models, possibly
featuring pathologies (energy conditions, speeds of sound).
We presented a general yet pratical framework to build phys-
ically reasonable anisotropic compact objects within relativis-
tic elasticity.



e We found examples of ultracompact objects (featuring a light

ring, % > %), but no violations of Buchdahl's limit % < %.

May be interesting to study gravitational wave echoes and
nonlinear instabilities due to the second light ring (whose
existence we confirmed).

e Still to do:
— Other models, including non-flat reference metrics;
— Multilayer solutions;
— Deformations of generic barotropic fluids;

— Less symmetric configurations, e.g. rotating and deformed
elastic solutions.



Thank you for your
attention!




