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Rigid bodies and Ehrenfest’s paradox

2



• Rigid body: distance between any two points at a given

instant remains constant.

• So no rigid bodies in relativity.

• Physically, it takes time for one end of the body to receive

information about forces acting on the other end.



• Ehrenfest’s paradox:

• So no undeformable bodies in relativity.



Relativistic elasticity

• An elastic medium in general relativity is described by:

– A spacetime (M, g);

– A Riemannian 3-manifold (Σ, δ) (reference configuration);

– A projection map π : M → Σ whose level sets are timelike

curves (the worldlines of the medium particles).
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M

↓ π

Σ

γ

δ



• If we choose local coordinates (x̄1, x̄2, x̄3) on Σ then we can

think of π as a set of three scalar fields.

• We can complete (x̄1, x̄2, x̄3) into coordinates (t̄, x̄1, x̄2, x̄3)

for (M, g) yielding the rest frame of any given worldline:

g = −dt̄2 + γijdx̄
idx̄j (at that worldline).

• Note that

γ = γijdx̄
idx̄j

is a (time-dependent) Riemannian metric on Σ, describing

the local deformations of the medium along each worldline.



• We can compute the (inverse) metric γ from

γij = gµν
∂x̄i

∂xµ
∂x̄j

∂xν
.

• Choose a Lagrangian density L of the form L = L(x̄i, δij, γij)
for the action

S =
∫

M
L
√
−g d4x.

The energy-momentum tensor is then

Tµν = 2
∂L
∂gµν

− L gµν = 2
∂L
∂γij

∂µx̄
i ∂νx̄

j − L gµν.



• Therefore

L = T0̄0̄ = ρ

is the rest energy density.

• The choice of ρ = ρ(x̄i, δij, γ
ij) is called the elastic law.

• Perfect fluid: ρ = ρ(n) ⇒ p = n
dρ

dn
− ρ, where n =

√
det(γij)

(assumes that δij is the Kronecker delta).



Example: rigid rod

• For one-dimensional elastic bodies in a two-dimensional space-

time (M, g) there is no difference between solids and fluids:

the Lagrangian depends only on γ11 = ∂αx̄∂αx̄.

• For a rigid elastic body (speed of sound = speed of light)

we have ρ = p+ ρ0, yielding

ρ =
ρ0
2
(γ11 +1) =

ρ0
2
(∂αx̄∂

αx̄+1).
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• This is the Lagrangian for a massless scalar field, and so the

equation of motion is just the wave equation �x̄ = 0, which

can be exactly solved in two dimensions.

• For example, the motion of an uniformly stretched rigid rod

released from rest (imposing zero pressure at the endpoints)

in Minkowski’s two-dimensional spacetime is as follows:



t

x0 eεL

cosh(ε)L

2cosh(ε)L



Spherical symmetry

• Metric: g = −e2α(r)dt2 + e2β(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)
.

• TOV equations:




dprad
dr

=
2

r
(ptan − prad)− (prad + ρ)

dα

dr

dα

dr
=

e2β

r

(
m

r
+4πr2prad

)
,

where

e−2β(r) = 1− 2m(r)

r
, m(r) = 4π

∫ r

0
ρ(u)u2du.
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• Equation of state: ρ(r) = ρ̂(δ(r), η(r)), where




δ(r) =
√
det(γij)

η(r) =
3

r3

∫ r

0
eβ(u)δ(u)u2du

and 



p̂rad(δ, η) = δ∂δρ̂(δ, η) − ρ̂(δ, η)

p̂tan(δ, η) = p̂rad(δ, η) +
3

2
η∂ηρ̂(δ, η)

(so all matter quantities depend on δ).



• Must be careful to consider only physically reasonable solu-

tions when integrating the TOV equations.

• Must check energy conditions:




SEC : ρ+ prad +2ptan ≥ 0; ρ+ prad ≥ 0; ρ+ ptan ≥ 0.

WEC : ρ ≥ 0; ρ+ prad ≥ 0; ρ+ ptan ≥ 0.

NEC : ρ+ prad ≥ 0; ρ+ ptan ≥ 0.

DEC : ρ ≥ |prad|; ρ ≥ |ptan|.



• Must check reality and subluminality of the speeds of sound:




c2L(δ, η) =
δ∂δp̂rad
ρ̂+ p̂rad

;

c2T(δ, η) =
p̂tan − p̂rad

(ρ̂+ p̂tan)
(
1− δ2/η2

);

c̃2L(δ, η) =
δ∂δp̂tan +3η∂ηp̂tan

ρ̂+ p̂tan
;

c̃2T(δ, η) =
p̂rad − p̂tan

(ρ̂+ p̂rad)
(
1− η2/δ2

)

(many times missed when considering anisotropic models).



Material models

• Polytropic fluid:

ρ̂(δ, η) = (1− κn)ρ0δ + κnρ0δ
1+1

n.

• Leads to

p̂rad = p̂tan = Kσ̂1+
1
n,

with σ̂ the baryon density and K = κ(1− κn)−
n+1
n ρ

−1
n

0 .

• Quadratic elastic correction:

ρ̂(δ, η) = (1− κn)ρ0δ + κnρ0δ
1+1

n + ερ0(δ − η)2.
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• Model with scale-invariant Newtonian limit:

ρ̂(δ, η) = ρ0(1− κn)δ + κρ0δη
1
n

[
− s

n

((
1− n

s

)
(1 + n) +

2nε

κ

)

+
s

(1 + s)n

(
1− n

s
+

2nε

κ

)(
δ

η

)−1

+
s2

(1 + s)n

(
1+ n+

2nε

κ

)(
δ

η

)1
s
]

• Here s can be interpreted as a shear index; when s = n and

ε = 0 we recover the relativistic polytropes; for s = n = 1 it

reduces to the quadratic correction model.



• Gauge invariance: these materials are pre-stressed, so no nat-

ural reference state; invariance under redefinition of reference

state reduces (ρ0, κ, ε) to two gauge-invariant parameters:

K = κ(1− κn)−
n+1
n ρ

−1
n

0 , E =
ε

κ

(
κ

1− κn

)1−n
or E =

ε

κ
.

• Radial perturbations: Linearized time-dependent equations

for ζ(t, r) = eiωtζ(r) and χ(t, r) = eiωtχ(r) (related to radial

displacement and radial pressure) are




δ∂δp̂rad
dζ

dr
= e−(3α+β)r2χ− 3

rη∂ηp̂radζ

δ∂δp̂rad
dχ

dr
= 3

rη∂ηp̂radχ−
[
Q1 +Q2ω

2
]
ζ

,

with suitable boundary conditions.



Numerical results

• Mass-radius diagrams for quadratic model with n = 1
2 (left)

and scale-invariant model with n = 1 (right). Dashed means

superluminal. There exist ultracompact configurations.
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• Sound speeds (top) and density/pressure profiles (bottom)

for marginally causal stars in the quadratic model with n = 1
2.



• Radial stability: Squared frequency eigenvalues for radial sta-

bility analysis of elastic stars in quadratic model with n = 1
2.

Threshold of instability occurs at the maximum mass.



Conclusion and outlook

• Elastic models are useful tools to model extended bodies in

general relativity.

• Anisotropies are often introduced via ad-hoc models, possibly

featuring pathologies (energy conditions, speeds of sound).

We presented a general yet pratical framework to build phys-

ically reasonable anisotropic compact objects within relativis-

tic elasticity.
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• We found examples of ultracompact objects (featuring a light

ring, M
R > 1

3), but no violations of Buchdahl’s limit M
R < 4

9.

May be interesting to study gravitational wave echoes and

nonlinear instabilities due to the second light ring (whose

existence we confirmed).

• Still to do:

– Other models, including non-flat reference metrics;

– Multilayer solutions;

– Deformations of generic barotropic fluids;

– Less symmetric configurations, e.g. rotating and deformed

elastic solutions.



Thank you for your

attention!


