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Testing modified gravity theories

Exciting time where we’re using gravitational wave astronomy
to place constraint on new physics in entirely new way . . .
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Modified gravity theories

However, it’s unclear whether
most of these modifications are
on the same theoretical footing

as general relativity.
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Modified gravity theories

Focus here on theories
that give full (non-linear)
alternative predictions to

what happens when
compact objects merge.
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Well-posedness

The Einstein equations can be treated as a well-posed initial
problem (Choquet-Bruhat 1952) e.g. in a harmonic formulation
where we fix:

Ha := �xa = 0 .

Major obstacle: Finding well-posed initial value problem in
theories that modify the principal part of Einstein equations.

Without weak hyperbolicity, arbitrarily high frequency
perturbations blow up ∼ eαωt

Without strong hyperbolicity, arbitrarily high frequency
perturbations blow up ∼ (ωt)n

Not just a numerical problem, but something you’re forced
to confront in simulations.
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Modifying general relativity

S =

∫
d4x
√−g

(1
2

R − 1
2

(∇φ)2 − V (φ) + α (φ) (∇φ)4 + β (φ)G + . . .

+ γ (φ) ∗RabcdRabcd + (RabcdRabcd )2/Λ6 + . . .
)

Some modifications no longer have 2nd
order equations of motion (E.g.
Chern-Simons)
Then have no choice but to use an
approximate approach: e.g. order-reduction
(Okounkova+ 2020, Galvez Ghersi+ 2021)
or modify short wavelength behavior
(Cayuso & Lehner 2020)
Potential problems: Fail to capture
non-perturbative or secular effects.

“Nope!"
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Secular growth in order reduction

Okounkova (2020)
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Modifying general relativity

S =

∫
d4x
√−g

(1
2

R − 1
2

(∇φ)2 − V (φ) + α (φ) (∇φ)4 + β (φ)G + . . .
)

For those with 2nd order equations
(Horndeski theories) may be well-posed,
but in general aren’t in commonly used
formulations.
General Horndeski theories, no
generalized harmonic gauge where the
equations of motion are strongly hyperbolic
in a generic weak-field background
(Papallo & Reall 2017).

“Maybe. . . "
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Modification to generalized harmonic — Kovacs &
Reall (2020)

Introduce auxiliary metrics that determine gauge and constraint
propagation.
Define

Cc := Hc − g̃ab∇a∇bxc = 0 .

Modify equations of motion as

Eab−1
2

(
δa

d ĝbc + δb
d ĝac − δc

d ĝab
)
∇cCd = 0

so constraint propagates as

ĝac∇a∇cCb = . . . .
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Modification to generalized harmonic — Kovacs &
Reall (2020)

For {gab, g̃ab, ĝab} distinct, equations of motion in modified
harmonic formulation are strongly hyperbolic for Horndeski
theories at sufficiently weak coupling, i.e. with λ� L2.

Doesn’t tell you about non-negligible coupling. (But don’t
expect to be able to make a general statement.)
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Non-perturbative dynamics of Horndeski

Question: Can we get this to work with strong-field/dynamical
systems (e.g. black hole mergers) and non-negligible coupling?

WE & Justin Ripley PRD 103, 044040 (2021) arXiv:2011.03547
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Einstein scalar Gauss Bonnet gravity

Focus on Einstein scalar Gauss Bonnet

S =
1

8π

∫
d4x
√−g

(
1
2

R − 1
2

(∇φ)2 + β(φ)G
)

with G = R2 − 4RabRab + RabcdRabcd .
Representative example of Horndeski, violates null
convergence condition
Has attracted much attention lately, due to black hole
solutions with scalar hair
Can leverage experience regarding hyperbolicity in
spherically symmetric case
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ESGB equations in modified harmonic

Evolution variables {gab, ∂tgab, φ, ∂tφ}
(

Aab
ef Bab

Cef D

)
∂2

t

(
gef
φ

)
+

(
F (g)

ab
F (φ)

)
= 0

with gauge choices {Ha, g̃ab, ĝab}.
Equations now fully nonlinear, but linear with respect to
repeated derivatives: e.g., no terms like (∂2

c gab)2.
Additional gauge degrees of freedom. (However, simple
choices for g̃ab and ĝab seem to work.)
Breakdown of equations inside black holes much more
severe. Excision essential.
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Improved hyperbolicity

Harmonic vs. auxiliary metric harmonic
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Use of auxiliary metrics removes frequency dependent growth
associated with weak (and not strong) hyperbolicity.
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Shift-symmetric Einstein Scalar Gauss Bonnet

�φ+ λG = 0 ,

Rab −
1
2

gabR + 2λδefcd
ijg(agb)dR ij

ef∇g∇cφ =

∇aφ∇bφ−
1
2

(∇φ)2 gab ,

Vacuum black holes are not stationary solutions.
Static solutions of black holes with scalar hair for
λ/M2 . 0.2 (Sotiriou & Zhou 2014)

See Witek+ (2019); Okounkova (2020) for mergers in
test-field/order-reduced framework
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Breakdown of hyperbolicity in spherical symmetry

In spherical symmetry, when λ exceeds this limit, elliptic region
develops outside black hole horizon (Ripley & Pretorius 2020).

Roughly, PDEs are Tricomi type.
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Black hole collisions in shift-symmetric ESGB
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Black holes develop scalar hair while shrinking, and then
collide.
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Black hole collisions: radiation
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Scalar and gravitational wave radiation in full shift-symmetric
ESGB.
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Z2 Symmetric Einstein Scalar Gauss Bonnet

β(φ) =
λ

2
φ2 +

σ

4
φ4 + . . .

Vacuum black holes are stationary solutions, but can be
unstable: �φ ≈ −λφG .
Instability affects non-spinning BHs for λ > 0, only sets in
at higher spin for λ < 0 (Doneva+ 2018, Silva+ 2018,
Dima+ 2020).
Stationary solutions of black holes with scalar hair for band
of masses/spins at fixed coupling (Silva+ 2018, Berti+
2021, Herdeiro+ 2021)

WE & Justin Ripley PRL 127, 101102 (2021) arXiv:2105.08571
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Black hole scalarization in Z2 symmetric ESGB

Range of parameters where black holes with scalar hair are the
stable endpoint of evolving a vacuum black hole.
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λ < 0 : spin-induced
scalarization

But cf. Maximum stable stationary BH has λe ≈ 8.6M2
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Results

Hyperbolicity of dynamical formation more severely restricts
parameters (compared to constructing stationary solutions)
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But still have interesting range (e.g. where effect on merger
gravitational waves is significant)
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Binary black hole inspiral in shift-symmetric ESGB
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Binary black hole inspiral in shift-symmetric ESGB

Methods work well for quasi-circular inspiral at similarly large
coupling, though merger may lead to earlier breakdown of
theory (or methods).
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Work in progress with J. Ripley and M. Corman
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Binary neutron star merger

Neutron star mergers can create small black holes (relative to
other known astrophysical channels), probe the smallest
coupling.
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Conclusions/Future work

We have now the tools to give complete answer to questions
like: What is the gravitational wave signal from a black hole
merger in a Horndeski theory of gravity?

Future work:
Formulate/solve modified initial value problem
(side-stepped here by using vacuum ID; see Kovacs 2021)
Determine domain where theories are well-posed, and can
give predictions for GW observations of compact object
mergers.
Compare to order-reduction, other approximations that
may not capture secular/non-perturbative effects.
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