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Spontaneous scalarization

There is need for models where new physics �appears� when 
gravity gets strong

Example: A theory with an extra scalar field

Jordan frame action:

Redefinitions:
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Spontaneous scalarization

  If                      then the theory will admit GR solutions 
around matter!

  However they will not necessarily be the only ones...

  The non-GR configuration is preferred for sufficiently 
large central density

T. Damour and G. Esposito-Farese, Phys. Rev. Lett. 70, 2220 (1993)

Scalar EOM:

Einstein frame action:
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Tachyonic instability

Taken from G. Esposito-Farese, arXiv:gr-cq/0402007

  Severely constrained by 
binary pulsar tests, 
unless there is a mass.

  The DEF model only 
works for stars
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Scalar fields in BH spacetimes 

S.W. Hawking, Comm. Math. Phys. 25, 152 (1972).

  stationary, as the endpoint of  collapse

  asymptotically flat, i.e. isolated

The equation

admits only the trivial solution in a BH spacetime that is

The same is true for the equation

with the additional assumption of  local stability

T. P. S. and V.  Faraoni, Phys. Rev. Lett. 108, 081103 (2012)
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No difference from GR?
Actually there is...

  Perturbations are different!

  They even lead to new effects, e.g. superradiance�


  In general, relaxing the symmetries of  the scalar can 
lead to �hairy� solutions.

  Cosmic evolution or matter could also lead to scalar 
�hair�

E. Barausse and T.P.S., Phys. Rev. Lett. 101, 099001 (2008)

A. Arvanitaki and S. Dubovksy, Phys. Rev. D 83, 044026 (2011)
R. Brito, V. Cardoso and P. Pani, Lect.Notes Phys. 906, 1 (2015)

T. Jacobson, Phys. Rev. Lett. 83, 2699 (1999);
M. W. Horbatsch and C. P. Burgess, JCAP 1205, 010 (2012).
V. Cardoso, I. P. Carucci, P. Pani and T. P. S., Phys. Rev. Lett. 111, 111101 (2013)

C. A. R. Herdeiro and E. Radu, Phys. Rev. Lett. 112, 221101 (2014)
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Black hole scalarization

No-hair theorem for the action

provided that     , 

That is, for the equation

trivial solutions are unique if  admissible, if  the effective mass is 
positive

  But if  it is negative then there can be�scalarization�!

H. O. Silva, J. Sakstein, L. Gualtieri, T.P.S, and E. Berti, PRL 120, 131104 (2018)
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Black hole scalarization

GKerr =
48M2

(r2 + �2)6
�
r6 � 15r4�2 + 15r2�4 � �6

�

  For           : Schwarzschild and�
 �
Scalarization for �
�
�
 

  For            :     can change sign near the horizon �
�
Spin-induced scalarization when �
�
�

� = 0 G > 0

H. O. Silva, J. Sakstein, L. Gualtieri, T.P.S, and E. Berti, PRL 120, 131104 (2018)
D. D. Doneva and S. S. Yazadjiev, PRL 120, 131103 (2018)

G� 6= 0

A. Dima, E. Barausse, N. Franchini, and T.P.S, PRL 125, 231101 (2020)�
C. A. R. Herdeiro, E. Radu, H. O. Silva, T.P.S., and N. Yunes, PRL 126, 011103 (2021)�
E. Berti, L. G. Collodel, B. Kleihaus, and J. Kunz, PRL 126, 011104 (2021)

f 00(�0) > 0

f 00(�0) < 0
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Nonlinear quenching

�  Quadratic coupling (minimal model) leads to radially 
unstable scalarized solutions

�  Exponential coupling is not

�  quadratic coupling: scalar EOM linear in the scalar

�   large metric backreaction necessary to quench the 
instability

�  …or nonlinearity in the scalar, e.g. standard  �
potential term will do!

Explanation:
J. L. Blazquez-Sacedo et al.,  Phys. Rev. D 98, 084011 (2018)

H. O. Silva et al., Phys. Rev. D 99, 064011 (2019)

C. F. B. Macedo et al., Phys. Rev D 99, 104041 (2019)
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Nonlinear quenching
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FIG. 5. Charge-mass diagram for scalarized solutions with a quadratic scalar-Gauss-Bonnet coupling (⇣ = 0) and the scalar potential of Eq. (4).
The threshold mass M̂t corresponds to the dotted vertical line. For M̂ > M̂t scalarized solutions are radially unstable, while the Schwarzschild
solution is stable. When �̂ is large enough, we can have solutions with M̂ < M̂t. In this region there are two branches of scalarized BH
solutions: the upper branch (dashed lines) is unstable to radial perturbations, whereas the lower branch (solid lines) is stable. Blue dots mark
solutions with marginal stability, which correspond to the minimum mass, maximally charged scalarized BH for the given (µ̂, �̂).

IV. SCALARIZED BLACK HOLE SOLUTIONS AND
RADIAL STABILITY

In this section we solve the fully nonlinear equations to
construct scalarized solutions, and check their stability un-
der linear radial scalar and tensor perturbations. This is ac-
complished as follows. First, we integrate the field equations
outwards starting from the horizon, where we impose the con-
ditions (16)–(19). By matching the numerical solutions with
Eqs. (21)–(23) in the far region (r � rh), we can extract the
BH mass M̂ and the scalar charge Q̂. This procedure gives
us the unperturbed solution. Next we check stability. The
linearized field equations for radial perturbations follow from
the ansatz

' = '0 + "
'1
r
, (26)

ds2 = [A + "Ft (t, r)]dt2 + [B�1 + "Fr (t, r)] + r2d⌦2, (27)

where (A, B, '0) are functions of r which satisfy the zeroth-
order (background) field equations. By inserting Eqs. (26)
and (27) into the field equations (10) and (11) and expanding
up to first order, one can show that the equations for the per-
turbation functions reduce to a single second-order equation
of the form

h(r)
@2'1

@t2 �
@2'1

@r2 + k(r)
@'1
@r
+ p(r)'1 = 0, (28)

(see Appendix A and the supplemental M���������� note-
book [54]) where the coe�cients (h, k, p) depend only on the
background quantities and on r (cf. [33, 36, 37]). Eq. (28) can
be further manipulated to reduce it to a Schrödinger-like form,
but since this step is not necessary to analyze the stability of
the system, and generates more complicated coe�cients, we
prefer not to display it here (see [37] for details). A mode
analysis can be performed by looking for solutions of the form
'1(t, r) = '1(r)e�i!t , and by imposing the requirement that
'1(r) vanishes at the horizon and at infinity when searching

for unstable modes. These requirements (as in Sec. III) result
in an eigenvalue problem for !2 < 0.

Before applying this process in general, it is instructive to
perform a preliminary comparative study in order to discern
how self-interactions a�ect the stability of scalarized solutions.
In Fig. 4 we fix µ̂ = 0.05 and we compare the normalized imag-
inary mode for the scalarized solutions with the corresponding
calculation for the Schwarzschild case, as presented in Fig. 3.
When �̂  0.2, both the modes of the scalarized solutions
(dashed red) and the Schwarzschild modes (solid gray) con-
verge to zero when M̂ = M̂t . However, for �̂ > 0.2 the modes
tend to zero when M̂ = M̂min and Q̂ = Q̂max, and we found
no unstable modes for BHs with M̂ > M̂min and Q̂ < Q̂max.
We note also that the unstable mode frequencies typically de-
crease as �̂ increases, implying stability on longer time-scales.
Qualitatively similar conclusions apply to other values of µ̂.

The main results of our integrations are presented in Fig. 5,
where we show scalarized solutions in the (M̂, Q̂) plane for
representative values of µ̂ and �̂. The dotted vertical line
represents the threshold for the stability of the Schwarzschild
solution, M̂ = M̂t. Solid lines correspond to radially stable
solutions, while dashed lines correspond to radially unstable
solutions. Note that we use di�erent conventions for radial
stability with respect to Refs. [36, 37], where solid and dashed
lines have the opposite meaning.

When �̂ = 0, all scalarized solutions are in the region
M̂ > M̂t, where the Schwarzschild solution is stable. These
scalarized solutions are radially unstable, and it is plausible
that Schwarzschild BHs will be the end-state of gravitational
collapse. As �̂ increases, the solutions move into the region
where M̂min < M̂ < M̂t; the minimum mass M̂min corresponds
to the blue dots in Fig. 5. Schwarzschild BHs are unstable
in this region, so the BH can support a nontrivial scalar pro-
vided the scalarized solutions are stable. For M̂ < M̂min, both
Schwarzschild and scalarized BHs are unstable.

Our analysis reveals that the quartic self-interaction can
stabilize scalarized solutions with a quadratic scalar-Gauss-

V (�) =
1

2
µ2�2 +

1

2
��4Potential :
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Models of scalarization

�                     and                               lead to DEF model 

�                                                          trades the�
�
coupling for a disformal coupling with matter

Minimal action for tachyonic instability

Most general up to field redefinition and nonlinear completion:

N. Andreou, N. Franchini, G. Ventagli, and T.P.S, Phys. Rev. D 99, 124022 (2019)

Lmin = R� 2⇤� 1 + �R

2
(@�)2 +

2m2
��

2 � 2↵�2G + ��2R

4
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Neutron star scalarization

G. Ventagli, A. Lehebel, and T.P.S, Phys. Rev. D 102, 024050 (2020)
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BHs and Ricci coupling

G. Antoniou, A. Lehebel, G. Ventagli, and T.P.S, arXiv: 2105.04479 [gr-qc]

S =
1

16⇡G

Z
d4x

p
�g
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 also leads to GR as a cosmic attractor!� > 0

G. Antoniou, L. Bordin, and T.P.S, PRD 103, 024012 (2021) 
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Scalarization and cosmology

But    leads to GR as a cosmic attractor!� > 0

G. Antoniou, L. Bordin, and T.P.S, PRD 103, 024012 (2021) 
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FIG. 1: Top panel: E↵ective energy density of the scalar ⇢� over the energy density of the cosmic fluid ⇢a as a
function of redshift. Bottom panel: Evolution of the scalar field � in units of its a reference value �i, fixed at

z = 1010.

FIG. 2: Same as Fig. 1 but for very high redshifts.

FIG. 3: Same as Fig. 2 but for � = �1.

coupling with the Gauss-Bonnet invariant is the domi-
nant one at large curvatures and its coupling constant
is dimensionful. As such, it controls the curvature scale
at which departure from standard cosmology would ap-
pear. This would happen when the universe is of the
size of a few kilometres, well before BBN, for values of
the coupling that are compatible with compact object
scalarization. At earlier times, departures from standard
cosmology would be significant, as our results show, and
as has been pointed out in the literature [37]. However,
it is quite a stretch to consider these models as good
e↵ective field theories, and hence take their predictions
seriously, all the way to energy scales where the universe

is the size of kilometres. Instead, it seems sensible to try
to embed them in a suitable UV completion with suitable
inflationary cosmology.

Finally, we consider � < 0. For � = 0, one expects
to recover the results of Refs. [30]. In fact, for any value
of � one will have a tachyonic instability on cosmological
scales at late times. This instability will be very slow, so
it is not particularly threatening in its own right. How-
ever, without an attractor mechanism at late times, se-
vere tuning of initial conditions would be needed to have
GR configurations locally (see � = 0 case) and the insta-
bility would only make things worse.

To conclude, we have demonstrated, using a specific
model as an example, that the phenomenon of sponta-
neous scalarization around compact objects is compati-
ble with having an attractor mechanism to GR on cos-
mological scales. In fact, our result show that fairly sim-
ple scalarization models can track GR cosmology over a
vast range of redshift and all the way back to BBN. The
key feature that leads to the desired behaviour is that
the scalar can couple in two di↵erent ways to curvature
— through the Gauss-Bonnet invariant and through the
Ricci scalar — with one coupling triggering scalarization
locally and the other providing a late time attractor cos-
mologically.

The action we have considered is rather minimal, as
it only includes terms that contribute to linearized per-
turbations around GR solutions with constant scalar. It
is perfectly su�cient to discuss the onset of scalarization
and whether GR is cosmological attractor. However, the
properties of scalarized solutions will be controlled by
the nonlinear (self)interactions of the scalar that one can
add to our action [23–25]. Hence, there is actually a
wide variety of scalarization models with the desired cos-
mological behaviour at late time and di↵erent properties
for compact objects. We leave the study of more elab-
orate models and the properties of compact objects in
such models for future work.

DEF and simple Gauss-Bonnet models require severe tuning of  
initial conditions!

T. Damour and K. Nordtvedt, PRL 70, 2217 (1993)�
D. Anderson, N. Yunes, and E. Barausse, PRD 94, 104064 (2016)
N. Franchini and T.P.S., PRD 101, 064068 (2020)



Scalarization and cosmology

G. Antoniou, L. Bordin, and T.P.S, PRD 103, 024012 (2021) 
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FIG. 1: Top panel: E↵ective energy density of the scalar ⇢� over the energy density of the cosmic fluid ⇢a as a
function of redshift. Bottom panel: Evolution of the scalar field � in units of its a reference value �i, fixed at

z = 1010.

FIG. 2: Same as Fig. 1 but for very high redshifts.

FIG. 3: Same as Fig. 2 but for � = �1.

coupling with the Gauss-Bonnet invariant is the domi-
nant one at large curvatures and its coupling constant
is dimensionful. As such, it controls the curvature scale
at which departure from standard cosmology would ap-
pear. This would happen when the universe is of the
size of a few kilometres, well before BBN, for values of
the coupling that are compatible with compact object
scalarization. At earlier times, departures from standard
cosmology would be significant, as our results show, and
as has been pointed out in the literature [37]. However,
it is quite a stretch to consider these models as good
e↵ective field theories, and hence take their predictions
seriously, all the way to energy scales where the universe

is the size of kilometres. Instead, it seems sensible to try
to embed them in a suitable UV completion with suitable
inflationary cosmology.

Finally, we consider � < 0. For � = 0, one expects
to recover the results of Refs. [30]. In fact, for any value
of � one will have a tachyonic instability on cosmological
scales at late times. This instability will be very slow, so
it is not particularly threatening in its own right. How-
ever, without an attractor mechanism at late times, se-
vere tuning of initial conditions would be needed to have
GR configurations locally (see � = 0 case) and the insta-
bility would only make things worse.

To conclude, we have demonstrated, using a specific
model as an example, that the phenomenon of sponta-
neous scalarization around compact objects is compati-
ble with having an attractor mechanism to GR on cos-
mological scales. In fact, our result show that fairly sim-
ple scalarization models can track GR cosmology over a
vast range of redshift and all the way back to BBN. The
key feature that leads to the desired behaviour is that
the scalar can couple in two di↵erent ways to curvature
— through the Gauss-Bonnet invariant and through the
Ricci scalar — with one coupling triggering scalarization
locally and the other providing a late time attractor cos-
mologically.

The action we have considered is rather minimal, as
it only includes terms that contribute to linearized per-
turbations around GR solutions with constant scalar. It
is perfectly su�cient to discuss the onset of scalarization
and whether GR is cosmological attractor. However, the
properties of scalarized solutions will be controlled by
the nonlinear (self)interactions of the scalar that one can
add to our action [23–25]. Hence, there is actually a
wide variety of scalarization models with the desired cos-
mological behaviour at late time and di↵erent properties
for compact objects. We leave the study of more elab-
orate models and the properties of compact objects in
such models for future work.

T. Anson, E. Babichev, C. Charmousis, S. Ramazanov, JCAP 06 023 (2019)�

Early universe:
  As the universe gets smaller, curvature gets larger, 

effective mass also gets larger. 

Scalarization can be triggered by quantum fluctuation 
during inflation

  The scalar will dominate 
and non-linearities will 
become important.

  Non-linear and UV 
completion essential.



Perspectives
Scalarization �screens� new physics at low curvatures

  Linear instability in strong field, quenched nonlinearly

  Others fields? Vectorisation, tensorisation

  Other instabilities?�


  Non-linear evolution and well-posedness

nonlinear terms

F. M. Ramazanoglu, Phys. Rev. D 96, 064009 (2017)
L. Annulli, V. Cardoso, L. Gualtieri, Phys. Rev. D 99, 044038 (2019)
…

F. M. Ramazanoglu, Phys. Rev. D 97, 024008 (2018)�
C. A. R. Herdeiro and E. Radu, Phys. Rev. D 99, 084039 (2019)
D. D. Doneva and S. S. Yadzadjiev, arXiv:2107.01738 [gr-qc]�
…

W. E. East and J. L. Ripley, arXiv: 2105.0871 [gr-qc] 

...a mechanism that wants to become a theory. 

g̃µ⌫ [gµ⌫ ,�]rµr⌫� = m2
e↵ [gµ⌫ ,�]�+
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